Batch State Estimation
 - Using All Available Data for Estimation -

Charles C. Cossette and Prof. James Richard Forbes

McGill University, Department of Mechanical Engineering

November 7, 2022

Problem Statement

- Consider the following process and measurement models,

$$
\begin{align*}
\mathbf{x}_{k}=\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)+\mathbf{w}_{k-1}, & \tag{1}\\
\mathbf{y}_{k}=\mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}, & \tag{2}\\
& k=0, \ldots, K
\end{align*}
$$

Problem Statement

- Consider the following process and measurement models,

$$
\begin{align*}
\mathbf{x}_{k}=\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)+\mathbf{w}_{k-1}, & & k=1, \ldots, K \tag{1}\\
\mathbf{y}_{k}=\mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}, & & k=0, \ldots, K . \tag{2}
\end{align*}
$$

- Suppose we have access to all the inputs \mathbf{u}_{k} and outputs \mathbf{y}_{k}, as well as an uncertain estimate of the initial state,

$$
\begin{equation*}
\mathbf{x}_{0} \sim \mathcal{N}\left(\check{\mathbf{x}}_{0}, \mathbf{P}_{0}\right) . \tag{3}
\end{equation*}
$$

- How do we find the "best" estimate of the all of states, all at once, using all the data available?

Problem Statement

- Consider the following process and measurement models,

$$
\begin{align*}
\mathbf{x}_{k}=\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)+\mathbf{w}_{k-1}, & & k=1, \ldots, K \tag{1}\\
\mathbf{y}_{k}=\mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}, & & k=0, \ldots, K . \tag{2}
\end{align*}
$$

- Suppose we have access to all the inputs \mathbf{u}_{k} and outputs \mathbf{y}_{k}, as well as an uncertain estimate of the initial state,

$$
\begin{equation*}
\mathbf{x}_{0} \sim \mathcal{N}\left(\check{\mathbf{x}}_{0}, \mathbf{P}_{0}\right) . \tag{3}
\end{equation*}
$$

- How do we find the "best" estimate of the all of states, all at once, using all the data available?
- This is the batch state estimation problem.
- The notation

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}_{0: K}=\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{K}\right\}, \\
& \mathbf{u}=\mathbf{u}_{0: K}=\left\{\mathbf{u}_{0}, \ldots, \mathbf{u}_{K}\right\}, \\
& \mathbf{y}=\mathbf{y}_{0: K}=\left\{\mathbf{y}_{0}, \ldots, \mathbf{y}_{K}\right\},
\end{aligned}
$$

will be used.

Batch Estimation

Figure 1: (red) Ground truth trajectory. (blue) Estimated trajectory.
Simulation of the estimation of a ground robot's trajectory using batch estimation.

Batch Estimation vs. Extended Kalman Filter

Norm of Estimation Error

Maximum A Posteriori

- One strategy is to find the maximum a posteriori estimate, which is the solution to

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \max } p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) . \tag{4}
\end{equation*}
$$

Figure 2: The MAP estimate finds the largest overall value of $p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)$.

Maximum A Posteriori

- One strategy is to find the maximum a posteriori estimate, which is the solution to

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \max } p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) . \tag{4}
\end{equation*}
$$

Figure 2: The MAP estimate finds the largest overall value of $p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)$.

- Note that this is the mode of the distribution, as opposed to the mean.

Maximum A Posteriori

- One strategy is to find the maximum a posteriori estimate, which is the solution to

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \max } p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) . \tag{4}
\end{equation*}
$$

Figure 2: The MAP estimate finds the largest overall value of $p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)$.

- Note that this is the mode of the distribution, as opposed to the mean.
- The next few steps consist of manipulating $p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)$ into a form so that a gradient-based optimization algorithm (i.e., Gauss-Newton) can be used.

Maximum A Posteriori

- Bayes' rule can be used to reformat the problem,

$$
\begin{align*}
\hat{\mathbf{x}} & =\underset{\mathbf{x}}{\arg \max } \frac{p\left(\mathbf{y} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)}{p\left(\mathbf{y} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)} \tag{5}\\
& =\underset{\mathbf{x}}{\arg \max } \alpha p\left(\mathbf{y} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right) \tag{6}
\end{align*}
$$

where the denominator has been lumped into a constant α, which does not depend on \mathbf{x}.

Maximum A Posteriori

- Bayes' rule can be used to reformat the problem,

$$
\begin{align*}
\hat{\mathbf{x}} & =\underset{\mathbf{x}}{\arg \max } \frac{p\left(\mathbf{y} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)}{p\left(\mathbf{y} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)} \tag{5}\\
& =\underset{\mathbf{x}}{\arg \max } \alpha p\left(\mathbf{y} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right) \tag{6}
\end{align*}
$$

where the denominator has been lumped into a constant α, which does not depend on \mathbf{x}.

- Two simplifying assumptions will be made.

Maximum A Posteriori

- Bayes' rule can be used to reformat the problem,

$$
\begin{align*}
\hat{\mathbf{x}} & =\underset{\mathbf{x}}{\arg \max } \frac{p\left(\mathbf{y} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)}{p\left(\mathbf{y} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)} \tag{5}\\
& =\underset{\mathbf{x}}{\arg \max } \alpha p\left(\mathbf{y} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{x}_{0}, \mathbf{u}\right), \tag{6}
\end{align*}
$$

where the denominator has been lumped into a constant α, which does not depend on \mathbf{x}.

- Two simplifying assumptions will be made.

1. From our measurement model $\mathbf{y}_{k}=\mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}$, we can write

$$
\begin{equation*}
p\left(\mathbf{y}_{k} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right)=p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) \tag{7}
\end{equation*}
$$

since \mathbf{y}_{k} is only conditioned on \mathbf{x}_{k}.

Maximum A Posteriori

- Bayes' rule can be used to reformat the problem,

$$
\begin{align*}
\hat{\mathbf{x}} & =\underset{\mathbf{x}}{\arg \max } \frac{p\left(\mathbf{y} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)}{p\left(\mathbf{y} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)} \tag{5}\\
& =\underset{\mathbf{x}}{\arg \max } \alpha p\left(\mathbf{y} \mid \mathbf{x}, \check{x}_{0}, \mathbf{u}\right) p\left(\mathbf{x} \mid \check{x}_{0}, \mathbf{u}\right), \tag{6}
\end{align*}
$$

where the denominator has been lumped into a constant α, which does not depend on \mathbf{x}.

- Two simplifying assumptions will be made.

1. From our measurement model $\mathbf{y}_{k}=\mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}$, we can write

$$
\begin{equation*}
p\left(\mathbf{y}_{k} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right)=p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) \tag{7}
\end{equation*}
$$

since \mathbf{y}_{k} is only conditioned on \mathbf{x}_{k}.
2. From our process model, we can write

$$
\begin{equation*}
p\left(\mathbf{x}_{k} \mid \mathbf{x}_{0: k-1}, \mathbf{u}_{0: K}, \check{\mathbf{x}}_{0}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) \tag{8}
\end{equation*}
$$

since \mathbf{x}_{k} is only conditioned on $\mathbf{x}_{k-1}, \mathbf{u}_{k-1}$ (the Markov assumption).

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right)=p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right)
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right)
\end{aligned}
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right)
\end{aligned}
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) .
\end{aligned}
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) .
\end{aligned}
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) .
\end{aligned}
$$

- Similarly,

$$
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right)=p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1: K}, \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) p\left(\mathbf{x}_{1: K} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right)
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) .
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right) & =p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1: K}, \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) p\left(\mathbf{x}_{1: K} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) \\
& =p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right) p\left(\mathbf{x}_{K} \mid \mathbf{x}_{1: K-1}, \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) p\left(\mathbf{x}_{1: K-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right)
\end{aligned}
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) .
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right) & =p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1: K}, \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) p\left(\mathbf{x}_{1: K} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) \\
& =p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right) p\left(\mathbf{x}_{K} \mid \mathbf{x}_{1: K-1}, \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) p\left(\mathbf{x}_{1: K-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) \\
& =p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right) p\left(\mathbf{x}_{K} \mid \mathbf{x}_{K-1}, \mathbf{u}_{K-1}\right) p\left(\mathbf{x}_{1: K-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right)
\end{aligned}
$$

Factored Joint Likelihood

- These assumptions allow us to "split" the PDFs into their factored joint likehoods

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{x})=p\left(\mathbf{y}_{0: K} \mid \mathbf{x}_{0: K}\right) & =p\left(\mathbf{y}_{0}, \mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{y}_{1: K}, \mathbf{x}_{0: K}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{y}_{1: K} \mid \mathbf{x}_{0: K}\right) \\
& =\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) .
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}\right) & =p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1: K}, \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) p\left(\mathbf{x}_{1: K} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) \\
& =p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right) p\left(\mathbf{x}_{K} \mid \mathbf{x}_{1: K-1}, \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) p\left(\mathbf{x}_{1: K-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) \\
& =p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right) p\left(\mathbf{x}_{K} \mid \mathbf{x}_{K-1}, \mathbf{u}_{K-1}\right) p\left(\mathbf{x}_{1: K-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: K}\right) \\
& =p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right) \prod_{k=1}^{K} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) .
\end{aligned}
$$

Maximum A Posteriori

- Returning to the optimization problem, it can now be written as

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \max } \alpha p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right)\left(\prod_{k=1}^{K} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)\left(\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right) . \tag{9}
\end{equation*}
$$

Maximum A Posteriori

- Returning to the optimization problem, it can now be written as

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \max } \alpha p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right)\left(\prod_{k=1}^{K} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)\left(\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right) \tag{9}
\end{equation*}
$$

- Minimizing the negative logarithm of (9) does not change the solution to the optimization problem, as it is a monotonically increasing function.
- Hence,

$$
\begin{align*}
\hat{\mathbf{x}} & =\underset{\mathbf{x}}{\arg \min }-\ln \left(\alpha p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right)\left(\prod_{k=1}^{K} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)\left(\prod_{k=0}^{K} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right)\right) \tag{10}\\
& =\underset{\mathbf{x}}{\arg \min }-\ln \alpha-\ln p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right)-\sum_{k=1}^{K} \ln p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)-\sum_{k=0}^{K} \ln p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) . \tag{11}
\end{align*}
$$

Minimizing the Negative Logarithm

Figure 3: The maximum of $p(x \mid y)$ is at the same x value as the minimum of $-\ln p(x \mid y)$. [1]

Using Gaussian Error Distributions

- The problem simplifies further if the probability density functions in (11) are assumed to be Gaussian distributions,

$$
\begin{aligned}
p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \mathbf{P}_{0}}} \exp \left(-\frac{1}{2}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)^{\top} \mathbf{P}_{0}^{-1}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)\right) \\
p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \mathbf{Q}_{k}}} \\
& \times \exp \left(-\frac{1}{2}\left(\mathbf{x}_{k}-\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)^{\top} \mathbf{Q}_{k}^{-1}\left(\mathbf{x}_{k}-\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)\right)\right. \\
p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) & =\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det} \mathbf{R}_{k}}} \exp \left(-\frac{1}{2}\left(\mathbf{y}_{k}-\mathbf{g}\left(\mathbf{x}_{k}\right)\right)^{\top} \mathbf{R}_{k}^{-1}\left(\mathbf{y}_{k}-\mathbf{g}\left(\mathbf{x}_{k}\right)\right)\right)
\end{aligned}
$$

Using Gaussian Error Distributions

- The cost function then becomes

$$
\begin{aligned}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } & -\ln \alpha-\ln \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \mathbf{P}_{0}}}-\ln \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \mathbf{Q}_{k}}}-\ln \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \mathbf{R}_{k}}} \\
& +\left(\frac{1}{2}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)^{\top} \mathbf{P}_{0}^{-1}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)\right) \\
& +\sum_{k=1}^{K}\left(\frac{1}{2}\left(\mathbf{x}_{k}-\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)^{\top} \mathbf{Q}_{k}^{-1}\left(\mathbf{x}_{k}-\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)\right) \\
& +\sum_{k=0}^{K}\left(\frac{1}{2}\left(\mathbf{y}_{k}-\mathbf{g}\left(\mathbf{x}_{k}\right)\right)^{\top} \mathbf{R}_{k}^{-1}\left(\mathbf{y}_{k}-\mathbf{g}\left(\mathbf{x}_{k}\right)\right)\right)
\end{aligned}
$$

- The first four terms are independent of \mathbf{x}, and can be lumped into a single constant α.

Using Gaussian Error Distributions

- Finally, by defining

$$
\mathbf{e}(\mathbf{x})=\left[\begin{array}{c}
\mathbf{e}_{0}(\mathbf{x}) \\
\mathbf{e}_{u, 1}(\mathbf{x}) \\
\vdots \\
\mathbf{e}_{u, K}(\mathbf{x}) \\
\mathbf{e}_{y, 0}(\mathbf{x}) \\
\vdots
\end{array}, \quad \begin{array}{c}
\mathbf{e}_{0}(\mathbf{x})=\mathbf{x}_{0}-\check{\mathbf{x}}_{0}, \\
\text { where } \\
\mathbf{e}_{u, k}(\mathbf{x})=\mathbf{x}_{k}-\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right), \\
\\
\mathbf{e}_{y, k}(\mathbf{x})=\mathbf{y}_{k}-\mathbf{g}\left(\mathbf{x}_{k}, \mathbf{0}\right),
\end{array}\right.
$$

$$
\mathbf{W}=\operatorname{diag}\left(\mathbf{P}_{0}^{-1}, \mathbf{Q}_{1}^{-1}, \ldots, \mathbf{Q}_{K}^{-1}, \mathbf{R}_{0}^{-1}, \ldots, \mathbf{R}_{K}^{-1}\right),
$$

the optimization problem becomes

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{W} \mathbf{e}(\mathbf{x})+\alpha, \tag{12}
\end{equation*}
$$

which is a weighted nonlinear least squares problem!

- Drop the α term.

Summary of MAP Estimation

Maximum A Posteriori

In summary, the optimization problem

$$
\begin{equation*}
\hat{\mathbf{x}}=\arg \max p\left(\mathbf{x} \mid \mathbf{x}_{0}, \mathbf{u}, \mathbf{y}\right) \tag{13}
\end{equation*}
$$

is completely equivalent to

$$
\begin{equation*}
\hat{\mathbf{x}}=\arg \min \frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{W} \mathbf{e}(\mathbf{x}), \tag{14}
\end{equation*}
$$

where $\mathbf{e}(\mathbf{x}), \mathbf{W}$ have been defined previously,

1. we assume that $p\left(\mathbf{y}_{k} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}\right)=p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)$,
2. we assume that $p\left(\mathbf{x}_{k} \mid \mathbf{x}_{1: k-1}, \mathbf{u}_{1: K}, \check{\mathbf{x}}_{0}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)$, and
3. we assume that the PDFs $p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right), p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right), p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)$ are Gaussian.

An Aside on Matrix Construction

- When constructing the batch matrices, the order of states and errors is arbitrary.
- It is equally mathematically valid to choose any ordering, so long as the construction of the matrices is consistent with the ordering.
- Some orderings provide computational benefits (sparsity in matrices).

$$
\begin{aligned}
& \mathbf{x}=\left\{\mathbf{x}_{k-1}, \mathbf{x}_{k}, \mathbf{x}_{k+1}\right\} \\
& \mathbf{e}(\mathbf{x})=\left[\begin{array}{c}
\mathbf{e}_{u, k-1}(\mathbf{x}) \\
\mathbf{e}_{u, k}(\mathbf{x}) \\
\mathbf{e}_{y, k-1}(\mathbf{x}) \\
\mathbf{e}_{y, k}(\mathbf{x}) \\
\mathbf{e}_{y, k+1}(\mathbf{x})
\end{array}\right]
\end{aligned}
$$

Figure 4: One choice of state and error ordering.

An Aside on Matrix Construction

- When constructing the batch matrices, the order of states and errors is arbitrary.
- It is equally mathematically valid to choose any ordering, so long as the construction of the matrices is consistent with the ordering.
- Some orderings provide computational benefits (sparsity in matrices).

$$
\begin{aligned}
& \mathbf{x}=\left\{\mathbf{x}_{k}, \mathbf{x}_{k+1}, \mathbf{x}_{k-1}\right\} \\
& \mathbf{e}(\mathbf{x})=\left[\begin{array}{c}
\mathbf{e}_{y, k+1}(\mathbf{x}) \\
\mathbf{e}_{y, k-1}(\mathbf{x}) \\
\mathbf{e}_{u, k}(\mathbf{x}) \\
\mathbf{e}_{u, k-1}(\mathbf{x}) \\
\mathbf{e}_{y, k}(\mathbf{x})
\end{array}\right]
\end{aligned}
$$

Figure 5: Another choice of state and error ordering.

Solving the Nonlinear Case

- We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton algorithm.

1. Start with an initial guess for $\mathbf{x}^{(0)}$,

Solving the Nonlinear Case

- We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton algorithm.

1. Start with an initial guess for $\mathbf{x}^{(0)}$,
2. compute the Jacobian of the error

$$
\begin{equation*}
\mathbf{H}=\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(i)}} \tag{15}
\end{equation*}
$$

Solving the Nonlinear Case

- We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton algorithm.

1. Start with an initial guess for $\mathbf{x}^{(0)}$,
2. compute the Jacobian of the error

$$
\begin{equation*}
\mathbf{H}=\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(i)}} \tag{15}
\end{equation*}
$$

3. compute the Gauss-Newton step

$$
\begin{equation*}
\delta \mathbf{x}^{(i)}=-\left(\mathbf{H}^{\top} \mathbf{W H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W e}(\mathbf{x}), \tag{16}
\end{equation*}
$$

4. update the estimate

$$
\begin{equation*}
\mathbf{x}^{(i+1)}=\mathbf{x}^{(i)}+\alpha \delta \mathbf{x}^{(i)}, \tag{17}
\end{equation*}
$$

5. and repeat until convergence.

Solving the Nonlinear Case

- We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton algorithm.

1. Start with an initial guess for $\mathbf{x}^{(0)}$,
2. compute the Jacobian of the error

$$
\begin{equation*}
\mathbf{H}=\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(i)}} \tag{15}
\end{equation*}
$$

3. compute the Gauss-Newton step

$$
\begin{equation*}
\delta \mathbf{x}^{(i)}=-\left(\mathbf{H}^{\top} \mathbf{W H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W e}(\mathbf{x}), \tag{16}
\end{equation*}
$$

4. update the estimate

$$
\begin{equation*}
\mathbf{x}^{(i+1)}=\mathbf{x}^{(i)}+\alpha \delta \mathbf{x}^{(i)}, \tag{17}
\end{equation*}
$$

5. and repeat until convergence.

- α is a step size (can be chosen with line search).
- Could also use Levenberg-Marquardt.

The Linear Case

- Given linear process and measurement models,

$$
\begin{align*}
\mathbf{x}_{k} & =\mathbf{A}_{k-1} \mathbf{x}_{k-1}+\mathbf{B}_{k-1} \mathbf{u}_{k-1}+\mathbf{w}_{k-1}, & \mathbf{w}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k}\right), \tag{18}\\
\mathbf{y}_{k} & =\mathbf{C}_{k} \mathbf{x}_{k}+\mathbf{v}_{k}, & \mathbf{v}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right),
\end{align*}
$$

it follows that the error matrix $\mathbf{e}(\mathbf{x})$ can be written as

$$
\begin{equation*}
\mathbf{e}(\mathbf{x})=\mathbf{H x}-\mathbf{z} \tag{20}
\end{equation*}
$$

where $\mathbf{x}=\left[\begin{array}{lll}\mathbf{x}_{0}^{\top} & \ldots & \mathbf{x}_{K}^{\top}\end{array}\right]^{\top}$,

$$
\mathbf{z}=\left[\begin{array}{c}
\check{\mathbf{x}}_{0} \tag{21}\\
\mathbf{B}_{0} \mathbf{u}_{0} \\
\vdots \\
\mathbf{B}_{K-1} \mathbf{u}_{K-1} \\
\mathbf{y}_{0} \\
\mathbf{y}_{1} \\
\vdots \\
\mathbf{y}_{K}
\end{array}\right], \quad \mathbf{H}=\left[\begin{array}{cccc}
\mathbf{1} & & & \\
-\mathbf{A}_{0} & \mathbf{1} & & \\
& \ddots & \ddots & \\
& & -\mathbf{A}_{K-1} & \mathbf{1} \\
-\mathbf{C}_{0} & & & \\
& -\mathbf{C}_{1} & & \\
& & \ddots & \mathbf{C}_{K}
\end{array}\right] .
$$

The Linear Case

- The Gauss-Newton step becomes

$$
\begin{align*}
\delta \mathbf{x}^{(i)} & =-\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W} \mathbf{e}\left(\mathbf{x}^{(i)}\right), \tag{22}\\
& =-\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W}\left(\mathbf{H} \mathbf{x}^{(i)}-\mathbf{z}\right), \tag{23}\\
& =-\mathbf{x}^{(i)}+\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W} \mathbf{z} \tag{24}
\end{align*}
$$

- The iterations $\mathbf{x}^{(i+1)}=\mathbf{x}^{(i)}+\delta \mathbf{x}^{(i)}$ then reduce to a single solution for the optimal estimate

$$
\begin{equation*}
\hat{\mathbf{x}}=\left(\mathbf{H}^{\top} \mathbf{W H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W} \mathbf{z} . \tag{25}
\end{equation*}
$$

Starting with a Continuous-Time Model

- Suppose that we instead have a continuous time process model $f(\cdot)$ where

$$
\begin{align*}
\dot{\mathbf{x}}(t) & =\boldsymbol{f}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t)), & \mathbf{w}(t) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{Q}(t)), \tag{26}\\
\mathbf{y}_{k} & =\mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}, & \mathbf{v}_{k} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right) . \tag{27}
\end{align*}
$$

- We can linearize about some trajectory $\mathbf{x}(t)=\overline{\mathbf{x}}(t)+\delta \mathbf{x}(t), \mathbf{w}(t)=\mathbf{0}+\delta \mathbf{w}(t), \mathbf{y}_{k}=\mathbf{g}\left(\overline{\mathbf{x}}_{k}\right)+\delta \mathbf{y}_{k}$ to create a linear approximation for the perturbation dynamics

$$
\begin{align*}
\delta \dot{\mathbf{x}}(t) & =\mathbf{A}(t) \delta \mathbf{x}(t)+\mathbf{L}(t) \delta \mathbf{w}(t) & \delta \mathbf{w}(t) & \sim \mathcal{N}(\mathbf{0}, \boldsymbol{Q}(t)), \\
\delta \mathbf{y}_{k} & =\mathbf{C}_{k} \delta \mathbf{x}_{k}+\mathbf{v}_{k} & \delta \mathbf{v}_{k} & \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right) .
\end{align*}
$$

- Using a discretization scheme (zero-order-hold), we can create a discrete time equivalent model

$$
\begin{array}{lr}
\delta \mathbf{x}_{k}=\mathbf{A}_{k-1} \delta \mathbf{x}_{k-1}+\delta \mathbf{w}_{k-1} & \delta \mathbf{w}_{k-1} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k-1}\right), \\
\delta \mathbf{y}_{k}=\mathbf{C}_{k} \delta \mathbf{x}_{k}+\delta \mathbf{v}_{k} & \delta \mathbf{v}_{k} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right), \tag{31}
\end{array}
$$

where $\delta \mathbf{x}_{k}=\mathbf{x}_{k}-\mathbf{f}\left(\overline{\mathbf{x}}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right)$ and $\delta \mathbf{y}_{k}=\mathbf{y}_{k}-\mathbf{g}\left(\overline{\mathbf{x}}_{k}\right)$.

Starting with a Continuous-Time Model

- To proceed with the batch MAP framework, we set the linearization points to simply be our current best state estimate $\overline{\mathbf{x}}_{k-1}=\hat{\mathbf{x}}_{k-1}^{(i)}$ at iteration i.
- The state is given by

$$
\begin{align*}
\mathbf{x}_{k}=\overline{\mathbf{x}}_{k}+\delta \mathbf{x}_{k} & =\mathbf{f}\left(\hat{\mathbf{x}}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right)+\mathbf{A}_{k-1} \delta \mathbf{x}_{k-1}+\delta \mathbf{w}_{k-1} \tag{32}\\
& =\mathbf{f}\left(\hat{\mathbf{x}}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right)+\mathbf{A}_{k-1}\left(\mathbf{x}_{k-1}-\hat{\mathbf{x}}_{k-1}^{(i)}\right)+\delta \mathbf{w}_{k-1} \tag{33}\\
& =\mathbf{A}_{k-1} \mathbf{x}_{k-1}+\underbrace{\mathbf{f (\hat { \mathbf { x } } _ { k - 1 } ^ { (i) } , \mathbf { u } _ { k - 1 }) - \mathbf { A } _ { k - 1 } \hat { \mathbf { x } } _ { k - 1 } ^ { (i) }}+\mathbf{w}_{k-1}}_{\triangleq \boldsymbol{u}_{k-1}} \tag{34}
\end{align*}
$$

and so it follows that $\mathbf{x}_{k} \sim \mathcal{N}\left(\mathbf{A}_{k-1} \mathbf{x}_{k-1}+\boldsymbol{u}_{k-1}, \mathbf{Q}_{k-1}\right)$.

- This produces a linear batch problem with the error written as $\mathbf{e}(\mathbf{x})=\mathbf{H x}-\mathbf{z}$, and as usual,

$$
\begin{align*}
\delta \hat{\mathbf{x}}^{(i)} & =-\left(\mathbf{H}^{\top} \mathbf{W H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W e}\left(\hat{\mathbf{x}}^{(i)}\right) \tag{35}\\
\hat{\mathbf{x}}^{(i+1)} & =\hat{\mathbf{x}}^{(i)}+\alpha \delta \hat{\mathbf{x}}^{(i)} \tag{36}
\end{align*}
$$

- We then recompute (35) at the new state estimate, and this is repeated until convergence.

Estimate Mean and Covariance

- The solution to our optimization problem gave us the mode of our state distribution, $p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)$.
- It is useful to also know its mean and covariance.
- For this, it is more convenient to use the information form of a Gaussian PDF.

Information Form of a Gaussian Distribution

- Recall that a Gaussian PDF is given by

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) . \tag{37}
\end{equation*}
$$

Information Form of a Gaussian Distribution

- Recall that a Gaussian PDF is given by

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) . \tag{37}
\end{equation*}
$$

- We can expand and manipulate the inside of the $\exp (\cdot)$ to give

$$
\begin{equation*}
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}-2 \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) \tag{38}
\end{equation*}
$$

Information Form of a Gaussian Distribution

- Recall that a Gaussian PDF is given by

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) . \tag{37}
\end{equation*}
$$

- We can expand and manipulate the inside of the $\exp (\cdot)$ to give

$$
\begin{align*}
p(\mathbf{x}) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}-2 \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) \tag{38}\\
& =\frac{\exp \left(-\frac{1}{2}\left(\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right)}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right) \tag{39}
\end{align*}
$$

Information Form of a Gaussian Distribution

- Recall that a Gaussian PDF is given by

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) . \tag{37}
\end{equation*}
$$

- We can expand and manipulate the inside of the $\exp (\cdot)$ to give

$$
\begin{align*}
p(\mathbf{x}) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}-2 \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) \tag{38}\\
& =\frac{\exp \left(-\frac{1}{2}\left(\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right)}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right) \tag{39}\\
& =\frac{\exp \left(-\frac{1}{2}\left(\boldsymbol{\eta}^{\top} \boldsymbol{\Lambda}^{-1} \boldsymbol{\eta}\right)\right)}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Lambda}^{-1}}} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Lambda} \mathbf{x}+\boldsymbol{\eta}^{\top} \mathbf{x}\right) \tag{40}
\end{align*}
$$

Information Form of a Gaussian Distribution

- Recall that a Gaussian PDF is given by

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) . \tag{37}
\end{equation*}
$$

- We can expand and manipulate the inside of the $\exp (\cdot)$ to give

$$
\begin{align*}
p(\mathbf{x}) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}-2 \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) \tag{38}\\
& =\frac{\exp \left(-\frac{1}{2}\left(\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right)}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right) \tag{39}\\
& =\frac{\exp \left(-\frac{1}{2}\left(\boldsymbol{\eta}^{\boldsymbol{\top}} \boldsymbol{\Lambda}^{-1} \boldsymbol{\eta}\right)\right)}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Lambda}^{-1}}} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Lambda} \mathbf{x}+\boldsymbol{\eta}^{\top} \mathbf{x}\right) \tag{40}
\end{align*}
$$

where we have defined $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$ as the information matrix and $\boldsymbol{\eta}=\boldsymbol{\Lambda} \boldsymbol{\mu}$ as the information vector.

Information Form of a Gaussian Distribution

Information Form of a Gaussian Distribution

In summary, a Gaussian PDF can equivalently be expressed in information form, denoted $\mathcal{N}^{-1}(\boldsymbol{\eta}, \boldsymbol{\Lambda})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\begin{equation*}
\mathcal{N}^{-1}(\boldsymbol{\eta}, \boldsymbol{\Lambda})=\beta \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Lambda} \mathbf{x}+\boldsymbol{\eta}^{\top} \mathbf{x}\right), \tag{41}
\end{equation*}
$$

where

- β is a normalization constant given in (40),
- $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$ is called the information matrix, and
- $\boldsymbol{\eta}=\boldsymbol{\Lambda} \boldsymbol{\mu}$ is called the information vector.

Estimate Mean and Covariance - The Linear Case

- In the linear case, the PDF of x is

$$
\begin{equation*}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)=\underbrace{\frac{1}{\sqrt{(2 \pi)^{K(n+p)} \operatorname{det} \mathbf{W}^{-1}}}}_{\text {some constant } \beta} \exp \left(-\frac{1}{2}(\mathbf{H} \mathbf{x}-\mathbf{z})^{\top} \mathbf{W}(\mathbf{H} \mathbf{x}-\mathbf{z})\right) . \tag{42}
\end{equation*}
$$

- We can manipulate the inside of the exponential to get

$$
\begin{align*}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) & =\beta \exp \left(-\frac{1}{2}\left(\mathbf{x}^{\top} \mathbf{H}^{\top}-\mathbf{z}^{\top}\right) \mathbf{W}(\mathbf{H} \mathbf{x}-\mathbf{z})\right), \tag{43}\\
& =\beta \exp \left(-\frac{1}{2}\left(\mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{W} \mathbf{H} \mathbf{x}-2 \mathbf{z}^{\top} \mathbf{W} \mathbf{H z}+\mathbf{z}^{\top} \mathbf{W} \mathbf{z}\right)\right), \tag{44}\\
& =\underbrace{\beta \exp \left(-\frac{1}{2} \mathbf{z}^{\top} \mathbf{W} \mathbf{z}\right)}_{\text {new constant } \kappa} \exp (-\frac{1}{2} \mathbf{x}^{\top} \underbrace{\mathbf{H}^{\top} \mathbf{W} \mathbf{H}}_{\boldsymbol{\Sigma}^{-1}=\boldsymbol{\Lambda}} \mathbf{x}+\underbrace{\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{z}\right)^{\top}}_{\boldsymbol{\eta}^{\top}} \mathbf{x}) \tag{45}
\end{align*}
$$

which is exactly in the information form of a Gaussian PDF.

Estimate Mean and Covariance - The Linear Case

- Hence, from

$$
\begin{equation*}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)=\kappa \exp (-\frac{1}{2} \mathbf{x}^{\top} \underbrace{\mathbf{H}^{\top} \mathbf{W} \mathbf{H}}_{\boldsymbol{\Sigma}^{-1}=\boldsymbol{\Lambda}} \mathbf{x}+\underbrace{\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{z}\right)^{\top}}_{\boldsymbol{\eta}^{\top}} \mathbf{x}) \tag{46}
\end{equation*}
$$

we see that $\boldsymbol{\Lambda}=\mathbf{H}^{\top} \mathbf{W H}$ is the information matrix, and $\boldsymbol{\eta}=\mathbf{H}^{\top} \mathbf{W z}$ is the information vector.

- Given the information matrix and information vector, it is easy to extract the covariance and mean with

$$
\begin{align*}
\boldsymbol{\Sigma} & =\boldsymbol{\Lambda}^{-1} \tag{47}\\
& =\left(\mathbf{H}^{\top} \mathbf{W H}\right)^{-1} \tag{48}\\
\boldsymbol{\mu} & =\boldsymbol{\Sigma} \boldsymbol{\eta} \tag{49}\\
& =\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W} \mathbf{z}=\hat{\mathbf{x}} \tag{50}
\end{align*}
$$

- In the linear case, the mean of the distribution is also the mode.

Estimate Mean and Covariance - The Nonlinear Case

- In the nonlinear case, the PDF of \mathbf{x} is

$$
\begin{equation*}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)=\beta \exp \left(-\frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{W e}(\mathbf{x})\right) . \tag{51}
\end{equation*}
$$

which is not Gaussian.

- However, we can approximate it as a Gaussian using a the first-order approximation evaluated at our estimate $\hat{\mathbf{x}}$

$$
\begin{equation*}
\mathbf{e}(\mathbf{x}) \approx \underbrace{\mathbf{e}(\hat{\mathbf{x}})}_{\mathbf{e}}+\mathbf{H}(\mathbf{x}-\hat{\mathbf{x}}) . \tag{52}
\end{equation*}
$$

- This leads to,

$$
\begin{align*}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) & \approx \beta \exp \left(-\frac{1}{2}\left(\overline{\mathbf{e}}^{\top}+(\mathbf{x}-\hat{\mathbf{x}})^{\top} \mathbf{H}^{\top}\right) \mathbf{W}(\overline{\mathbf{e}}+\mathbf{H}(\mathbf{x}-\hat{\mathbf{x}}))\right), \tag{53}\\
& \ldots \tag{54}\\
& =\kappa \exp (-\frac{1}{2} \mathbf{x}^{\top} \underbrace{\mathbf{H}^{\top} \mathbf{W H}}_{\boldsymbol{\Lambda}} \mathbf{x}+\underbrace{\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H} \hat{\mathbf{x}}-\mathbf{H}^{\top} \mathbf{W} \overline{\mathbf{e}}\right)^{\top}}_{\boldsymbol{\eta}^{\top}} \mathbf{x}) .
\end{align*}
$$

Estimate Mean and Covariance - The Nonlinear Case

- Hence, from

$$
\begin{equation*}
p\left(\mathbf{x} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) \approx \kappa \exp (-\frac{1}{2} \mathbf{x}^{\top} \underbrace{\mathbf{H}^{\top} \mathbf{W} \mathbf{H}}_{\boldsymbol{\Lambda}} \mathbf{x}+\underbrace{\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H} \hat{\mathbf{x}}-\mathbf{H}^{\top} \mathbf{W} \overline{\mathbf{e}}\right)^{\top}}_{\boldsymbol{\eta}^{\top}} \mathbf{x}) \tag{55}
\end{equation*}
$$

we see that $\boldsymbol{\Lambda}=\mathbf{H}^{\top} \mathbf{W H}$ is the information matrix, and $\boldsymbol{\eta}=\mathbf{H}^{\top} \mathbf{W H} \hat{\mathbf{x}}-\mathbf{H}^{\top} \mathbf{W} \bar{e}$ is the information vector.

- Given the information matrix and information vector, it is easy to extract the covariance and mean with

$$
\begin{align*}
\boldsymbol{\Sigma} & =\mathbf{\Lambda}^{-1} \tag{56}\\
& =\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H}\right)^{-1} \tag{57}\\
\boldsymbol{\mu} & =\boldsymbol{\Sigma} \boldsymbol{\eta} \tag{58}\\
& =\hat{\mathbf{x}}-\underbrace{\left(\mathbf{H}^{\top} \mathbf{W} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W} \overline{\mathbf{e}}}_{\text {should converge to } \mathbf{0}} \tag{59}
\end{align*}
$$

Batch Estimation on Matrix Lie Groups

- The invariant framework can be leveraged for batch estimation problems where the state is an element of a matrix Lie group.
- Let the state be represented by an element of a matrix Lie group, $\mathbf{X} \in G$, with process and measurement models given by

$$
\begin{align*}
\dot{\mathbf{X}}(t) & =\boldsymbol{F}(\mathbf{X}(t), \mathbf{u}(t), \mathbf{w}(t)), \tag{60}\\
\mathbf{y}_{k} & =\mathbf{g}_{k}\left(\mathbf{X}_{k}\right)+\mathbf{v}_{k} . \tag{61}
\end{align*}
$$

- Linearization using any perturbation definition will lead to

$$
\begin{align*}
\delta \dot{\boldsymbol{\xi}}(t) & =\mathbf{A}(t) \delta \boldsymbol{\xi}(t)+\mathbf{L}(t) \delta \mathbf{w}(t), \tag{62}\\
\delta \mathbf{y}_{k} & =\mathbf{C}_{k} \delta \boldsymbol{\xi}_{k}+\mathbf{v}_{k}, \tag{63}
\end{align*}
$$

- Discretization using any scheme (zero-order-hold, euler) will lead to

$$
\begin{align*}
\delta \boldsymbol{\xi}_{k} & =\mathbf{A}_{k-1} \delta \boldsymbol{\xi}_{k-1}+\delta \mathbf{w}_{k} \tag{64}\\
\delta \mathbf{y}_{k} & =\mathbf{C}_{k} \delta \boldsymbol{\xi}_{k}+\mathbf{v}_{k}, \tag{65}
\end{align*}
$$

Batch Estimation on Matrix Lie Groups

- After the discretization, a corresponding nonlinear discrete time process model will have the form

$$
\begin{equation*}
\mathbf{X}_{k}=\mathbf{F}\left(\mathbf{X}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right) \tag{66}
\end{equation*}
$$

- Starting from an initial guess $\check{\mathbf{X}}_{0}$, the error in the initial guess can be defined using the left-or right invariant error definition, with the left-invariant initial error is given by

$$
\begin{equation*}
\exp \left(\mathbf{e}_{0}^{\mathrm{L} \wedge}\right)=\mathbf{E}_{0}^{\mathrm{L}}=\mathbf{X}_{0}^{-1} \check{\mathbf{X}}_{0} \tag{67}
\end{equation*}
$$

and the right-invariant initial error is given by

$$
\begin{equation*}
\exp \left(\mathbf{e}_{0}^{\mathrm{R}^{\wedge}}\right)=\mathbf{E}_{0}^{\mathrm{R}}=\check{\mathbf{X}}_{0} \mathbf{X}_{0}^{-1} . \tag{68}
\end{equation*}
$$

Batch Estimation on Matrix Lie Groups

- The error due to the input is denoted $\mathbf{E}_{u, k} \in G$, and can also be defined in a left- or right-invariant sense.
- The left-invariant error due to the input is given by

$$
\begin{equation*}
\exp \left(\mathbf{e}_{u, k}^{\mathrm{L}} \wedge\right)=\mathbf{E}_{u, k}^{\mathrm{L}}=\mathbf{X}_{k}^{-1} \mathbf{F}_{k-1}\left(\mathbf{X}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right) \tag{69}
\end{equation*}
$$

whereas the right-invariant error due to the input is given by

$$
\begin{equation*}
\exp \left(\mathbf{e}_{u, k}^{\mathrm{R}} \wedge\right)=\mathbf{E}_{u, k}^{\mathrm{R}}=\mathbf{F}_{k-1}\left(\mathbf{X}_{k-1}, \mathbf{u}_{k-1}, \mathbf{0}\right) \mathbf{X}_{k}^{-1} . \tag{70}
\end{equation*}
$$

Batch Estimation on Matrix Lie Groups

- Leveraging the invariant framework, recall that left- and right-invariant measurements are of the form

$$
\begin{align*}
\mathbf{y}_{k}^{\mathrm{L}} & =\mathbf{X}_{k} \mathbf{b}_{k}+\mathbf{v}_{k} \tag{71}\\
\mathbf{y}_{k}^{\mathrm{R}} & =\mathbf{X}_{k}^{-1} \mathbf{b}_{k}+\mathbf{v}_{k} \tag{72}
\end{align*}
$$

where \mathbf{b}_{k} is some known column matrix.

- For left-invariant measurements, the measurement error is defined by

$$
\begin{equation*}
\mathbf{e}_{y, k}^{\mathrm{L}}=\mathbf{X}_{k}\left(\mathbf{y}_{k}^{\mathrm{L}}-\mathbf{g}_{k}\left(\mathbf{X}_{k}, \mathbf{0}\right)\right), \tag{73}
\end{equation*}
$$

as is done in the IEKF.

- For right-invariant measurements, the measurement error is defined by

$$
\begin{equation*}
\mathbf{e}_{y, k}^{\mathrm{R}}=\mathbf{X}_{k}^{-1}\left(\mathbf{y}_{k}^{\mathrm{R}}-\mathbf{g}_{k}\left(\mathbf{X}_{k}, \mathbf{0}\right)\right) . \tag{74}
\end{equation*}
$$

Batch Estimation on Matrix Lie Groups

- Using the invariant error definitions, the errors in the initial guess, the errors due to input, and the measurement errors can then be stacked as

$$
\mathbf{e}(\mathbf{X})=\left[\begin{array}{c}
\mathbf{e}_{0} \tag{75}\\
\mathbf{e}_{u, 1} \\
\vdots \\
\mathbf{e}_{u, K} \\
\mathbf{e}_{y, 0} \\
\vdots \\
\mathbf{e}_{y, K}
\end{array}\right]
$$

- For a group affine process model and a left-or right-invariant measurement model, the Jacobian of the error, written

$$
\begin{equation*}
\mathbf{H}=\left.\frac{\partial \mathbf{e}(\mathbf{X})}{\partial \delta \boldsymbol{\xi}}\right|_{\mathbf{X}=\mathbf{X}^{(i)}}, \tag{76}
\end{equation*}
$$

is state-estimate independent.

Batch Estimation on Matrix Lie Groups

- The Gauss-Newton algorithm becomes the following.

1. Start with an initial guess for $\check{\mathbf{X}}_{0}$,
2. compute the Jacobian of the error

$$
\begin{equation*}
\mathbf{H}=\left.\frac{\partial \mathbf{e}(\mathbf{X})}{\partial \delta \boldsymbol{\xi}}\right|_{\mathbf{x}=\mathbf{x}^{(i)}} . \tag{77}
\end{equation*}
$$

3. compute the Gauss-Newton step

$$
\begin{equation*}
\delta \boldsymbol{\xi}^{(i)}=-\left(\mathbf{H}^{\top} \mathbf{W H}\right)^{-1} \mathbf{H}^{\top} \mathbf{W e}\left(\mathbf{X}^{(i)}\right), \tag{78}
\end{equation*}
$$

where $\left.\delta \boldsymbol{\xi}^{(i)}=\left[\delta \boldsymbol{\xi}_{0}^{(i)^{\top}}, \ldots, \delta \boldsymbol{\xi}_{K}^{(i)}\right]^{\top}\right]^{\top}$,
4. update the estimate for all $k=0, \ldots, K$, using the appropriate left-invariant or right-invariant correction step given respectively by

$$
\begin{align*}
& \mathbf{X}_{k}^{(i+1)}=\mathbf{X}_{k}^{(i)} \exp \left(-\alpha \delta \boldsymbol{\xi}_{k}^{(i)^{\wedge}}\right), \tag{79}\\
& \mathbf{X}_{k}^{(i+1)}=\exp \left(-\alpha \delta \boldsymbol{\xi}_{k}^{(i)^{\wedge}}\right) \mathbf{X}_{k}^{(i)} \tag{80}
\end{align*}
$$

where α is a line search parameter,
5. and repeat until convergence.

Closing Remarks

- MAP/batch estimation is one of the most accurate and robust state estimation techniques we have today.
- However, in this form, it is not appropriate for real-time state estimation, because the complexity continues to grow as the state history gets larger and larger.
- There are many alternatives to the Gauss-Newton algorithm, such as the Levenberg-Marquart algorithm, which may have better performance.
- The matrix $\left(\mathbf{H}^{\top} \mathbf{W H}\right)$ is block tri-diagonal and sparse, which allows for efficient techniques to solve the Gauss-Newton step.

References

For more details, see [1]
[1] T. Barfoot, State Estimation for Robotics. Toronto, ON: Cambridge University Press, 2019.

