
Batch State Estimation
— Using All Available Data for Estimation —

Charles C. Cossette and Prof. James Richard Forbes

McGill University, Department of Mechanical Engineering

November 7, 2022

1 / 35

Problem Statement
I Consider the following process and measurement models,

xk = f(xk−1,uk−1) + wk−1, k = 1, . . . ,K (1)
yk = g(xk) + vk, k = 0, . . . ,K. (2)

I Suppose we have access to all the inputs uk and outputs yk, as well as an uncertain estimate
of the initial state,

x0 ∼ N (x̌0,P0). (3)

I How do we find the “best” estimate of the all of states, all at once, using all the data available?

I This is the batch state estimation problem.

I The notation

x = x0:K = {x0, . . . , xK},
u = u0:K = {u0, . . . ,uK},
y = y0:K = {y0, . . . , yK},

will be used.

2 / 35

Problem Statement
I Consider the following process and measurement models,

xk = f(xk−1,uk−1) + wk−1, k = 1, . . . ,K (1)
yk = g(xk) + vk, k = 0, . . . ,K. (2)

I Suppose we have access to all the inputs uk and outputs yk, as well as an uncertain estimate
of the initial state,

x0 ∼ N (x̌0,P0). (3)

I How do we find the “best” estimate of the all of states, all at once, using all the data available?

I This is the batch state estimation problem.

I The notation

x = x0:K = {x0, . . . , xK},
u = u0:K = {u0, . . . ,uK},
y = y0:K = {y0, . . . , yK},

will be used.

2 / 35

Problem Statement
I Consider the following process and measurement models,

xk = f(xk−1,uk−1) + wk−1, k = 1, . . . ,K (1)
yk = g(xk) + vk, k = 0, . . . ,K. (2)

I Suppose we have access to all the inputs uk and outputs yk, as well as an uncertain estimate
of the initial state,

x0 ∼ N (x̌0,P0). (3)

I How do we find the “best” estimate of the all of states, all at once, using all the data available?

I This is the batch state estimation problem.

I The notation

x = x0:K = {x0, . . . , xK},
u = u0:K = {u0, . . . ,uK},
y = y0:K = {y0, . . . , yK},

will be used.
2 / 35

Batch Estimation

Figure 1: (red) Ground truth trajectory. (blue) Estimated trajectory.
Simulation of the estimation of a ground robot’s trajectory using batch estimation.

3 / 35

Batch Estimation vs. Extended Kalman Filter

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Norm of Estimation Error

EKF

Batch Solution

4 / 35

Maximum A Posteriori
I One strategy is to find the maximum a posteriori estimate, which is the solution to

x̂ = arg max
x

p(x|x̌0,u, y). (4)

x

p(x|y, u, x̌0)

x̂

Figure 2: The MAP estimate finds the largest overall value of p(x|x̌0, u, y).

I Note that this is the mode of the distribution, as opposed to the mean.

I The next few steps consist of manipulating p(x|x̌0,u, y) into a form so that a gradient-based
optimization algorithm (i.e., Gauss-Newton) can be used.

5 / 35

Maximum A Posteriori
I One strategy is to find the maximum a posteriori estimate, which is the solution to

x̂ = arg max
x

p(x|x̌0,u, y). (4)

x

p(x|y, u, x̌0)

x̂

Figure 2: The MAP estimate finds the largest overall value of p(x|x̌0, u, y).

I Note that this is the mode of the distribution, as opposed to the mean.

I The next few steps consist of manipulating p(x|x̌0,u, y) into a form so that a gradient-based
optimization algorithm (i.e., Gauss-Newton) can be used.

5 / 35

Maximum A Posteriori
I One strategy is to find the maximum a posteriori estimate, which is the solution to

x̂ = arg max
x

p(x|x̌0,u, y). (4)

x

p(x|y, u, x̌0)

x̂

Figure 2: The MAP estimate finds the largest overall value of p(x|x̌0, u, y).

I Note that this is the mode of the distribution, as opposed to the mean.

I The next few steps consist of manipulating p(x|x̌0,u, y) into a form so that a gradient-based
optimization algorithm (i.e., Gauss-Newton) can be used. 5 / 35

Maximum A Posteriori
I Bayes’ rule can be used to reformat the problem,

x̂ = arg max
x

p(y|x, x̌0,u)p(x|x̌0,u)

p(y|x̌0,u)
(5)

= arg max
x

αp(y|x, x̌0,u)p(x|x̌0,u), (6)

where the denominator has been lumped into a constant α, which does not depend on x.

I Two simplifying assumptions will be made.

1. From our measurement model yk = g(xk) + vk, we can write

p(yk|x, x̌0, u) = p(yk|xk) (7)

since yk is only conditioned on xk.

2. From our process model, we can write

p(xk|x0:k−1, u0:K , x̌0) = p(xk|xk−1, uk−1) (8)

since xk is only conditioned on xk−1, uk−1 (the Markov assumption).

6 / 35

Maximum A Posteriori
I Bayes’ rule can be used to reformat the problem,

x̂ = arg max
x

p(y|x, x̌0,u)p(x|x̌0,u)

p(y|x̌0,u)
(5)

= arg max
x

αp(y|x, x̌0,u)p(x|x̌0,u), (6)

where the denominator has been lumped into a constant α, which does not depend on x.

I Two simplifying assumptions will be made.

1. From our measurement model yk = g(xk) + vk, we can write

p(yk|x, x̌0, u) = p(yk|xk) (7)

since yk is only conditioned on xk.

2. From our process model, we can write

p(xk|x0:k−1, u0:K , x̌0) = p(xk|xk−1, uk−1) (8)

since xk is only conditioned on xk−1, uk−1 (the Markov assumption).

6 / 35

Maximum A Posteriori
I Bayes’ rule can be used to reformat the problem,

x̂ = arg max
x

p(y|x, x̌0,u)p(x|x̌0,u)

p(y|x̌0,u)
(5)

= arg max
x

αp(y|x, x̌0,u)p(x|x̌0,u), (6)

where the denominator has been lumped into a constant α, which does not depend on x.

I Two simplifying assumptions will be made.

1. From our measurement model yk = g(xk) + vk, we can write

p(yk|x, x̌0, u) = p(yk|xk) (7)

since yk is only conditioned on xk.

2. From our process model, we can write

p(xk|x0:k−1, u0:K , x̌0) = p(xk|xk−1, uk−1) (8)

since xk is only conditioned on xk−1, uk−1 (the Markov assumption).

6 / 35

Maximum A Posteriori
I Bayes’ rule can be used to reformat the problem,

x̂ = arg max
x

p(y|x, x̌0,u)p(x|x̌0,u)

p(y|x̌0,u)
(5)

= arg max
x

αp(y|x, x̌0,u)p(x|x̌0,u), (6)

where the denominator has been lumped into a constant α, which does not depend on x.

I Two simplifying assumptions will be made.

1. From our measurement model yk = g(xk) + vk, we can write

p(yk|x, x̌0, u) = p(yk|xk) (7)

since yk is only conditioned on xk.

2. From our process model, we can write

p(xk|x0:k−1, u0:K , x̌0) = p(xk|xk−1, uk−1) (8)

since xk is only conditioned on xk−1, uk−1 (the Markov assumption).
6 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1)

.

7 / 35

Factored Joint Likelihood
I These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(y|x) = p(y0:K |x0:K) = p(y0, y1:K |x0:K)

= p(y0|y1:K , x0:K)p(y1:K |x0:K)

= p(y0|x0)p(y1:K |x0:K)

=

K∏
k=0

p(yk|xk).

I Similarly,

p(x|x̌0,u) = p(x0|x1:K , x̌0,u0:K)p(x1:K |x̌0,u0:K)

= p(x0|x̌0)p(xK |x1:K−1, x̌0,u0:K)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)p(xK |xK−1,uK−1)p(x1:K−1|x̌0,u0:K)

= p(x0|x̌0)

K∏
k=1

p(xk|xk−1,uk−1).

7 / 35

Maximum A Posteriori
I Returning to the optimization problem, it can now be written as

x̂ = arg max
x

αp(x0|x̌0)

(
K∏
k=1

p(xk|xk−1,uk−1)

)(
K∏
k=0

p(yk|xk)

)
. (9)

I Minimizing the negative logarithm of (9) does not change the solution to the optimization
problem, as it is a monotonically increasing function.

I Hence,

x̂ = arg min
x
− ln

(
αp(x0|x̌0)

(
K∏
k=1

p(xk|xk−1,uk−1)

)(
K∏
k=0

p(yk|xk)

))
(10)

= arg min
x
− lnα− ln p(x0|x̌0)−

K∑
k=1

ln p(xk|xk−1,uk−1)−
K∑
k=0

ln p(yk|xk). (11)

8 / 35

Maximum A Posteriori
I Returning to the optimization problem, it can now be written as

x̂ = arg max
x

αp(x0|x̌0)

(
K∏
k=1

p(xk|xk−1,uk−1)

)(
K∏
k=0

p(yk|xk)

)
. (9)

I Minimizing the negative logarithm of (9) does not change the solution to the optimization
problem, as it is a monotonically increasing function.

I Hence,

x̂ = arg min
x
− ln

(
αp(x0|x̌0)

(
K∏
k=1

p(xk|xk−1,uk−1)

)(
K∏
k=0

p(yk|xk)

))
(10)

= arg min
x
− lnα− ln p(x0|x̌0)−

K∑
k=1

ln p(xk|xk−1,uk−1)−
K∑
k=0

ln p(yk|xk). (11)

8 / 35

Minimizing the Negative Logarithm

5 10 15 20 25 30 35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

50

100

150

200

250

Figure 3: The maximum of p(x|y) is at the same x value as the minimum of − ln p(x|y). [1]

9 / 35

Using Gaussian Error Distributions

I The problem simplifies further if the probability density functions in (11) are assumed to be
Gaussian distributions,

p(x0|x̌0) =
1√

(2π)n det P0

exp

(
−1

2
(x0 − x̌0)TP−1

0 (x0 − x̌0)

)
,

p(xk|xk−1,uk−1) =
1√

(2π)n det Qk

× exp

(
−1

2
(xk − f(xk−1,uk−1)TQ−1

k (xk − f(xk−1,uk−1))

)
,

p(yk|xk) =
1√

(2π)p det Rk
exp

(
−1

2
(yk − g(xk))TR−1

k (yk − g(xk))

)
.

10 / 35

Using Gaussian Error Distributions

I The cost function then becomes

x̂ = arg min
x

− lnα− ln
1√

(2π)n det P0

− ln
1√

(2π)n det Qk

− ln
1√

(2π)n det Rk

+

(
1

2
(x0 − x̌0)TP−1

0 (x0 − x̌0)

)
+

K∑
k=1

(
1

2
(xk − f(xk−1,uk−1))TQ−1

k (xk − f(xk−1,uk−1))

)

+

K∑
k=0

(
1

2
(yk − g(xk))TR−1

k (yk − g(xk))

)
.

I The first four terms are independent of x, and can be lumped into a single constant α.

11 / 35

Using Gaussian Error Distributions
I Finally, by defining

e(x) =

e0(x)
eu,1(x)

...
eu,K(x)
ey,0(x)

...
ey,K(x)

, where

e0(x) = x0 − x̌0,

eu,k(x) = xk − f(xk−1,uk−1, 0),

ey,k(x) = yk − g(xk, 0),

W = diag(P−1
0 ,Q−1

1 , . . . ,Q−1
K ,R−1

0 , . . . ,R−1
K),

the optimization problem becomes

x̂ = arg min
x

1

2
e(x)TWe(x) + α, (12)

which is a weighted nonlinear least squares problem!

I Drop the α term.
12 / 35

Summary of MAP Estimation

Maximum A Posteriori
In summary, the optimization problem

x̂ = arg max p(x|x0,u, y) (13)

is completely equivalent to

x̂ = arg min
1

2
e(x)TWe(x), (14)

where e(x),W have been defined previously,
1. we assume that p(yk|x, x̌0,u) = p(yk|xk),
2. we assume that p(xk|x1:k−1,u1:K , x̌0) = p(xk|xk−1,uk−1), and
3. we assume that the PDFs p(x0|x̌0), p(xk|xk−1,uk−1), p(yk|xk) are Gaussian.

13 / 35

An Aside on Matrix Construction
I When constructing the batch matrices, the order of states and errors is arbitrary.

I It is equally mathematically valid to choose any ordering, so long as the construction of the
matrices is consistent with the ordering.

I Some orderings provide computational benefits (sparsity in matrices).

Figure 4: One choice of state and error ordering.

14 / 35

An Aside on Matrix Construction
I When constructing the batch matrices, the order of states and errors is arbitrary.

I It is equally mathematically valid to choose any ordering, so long as the construction of the
matrices is consistent with the ordering.

I Some orderings provide computational benefits (sparsity in matrices).

Figure 5: Another choice of state and error ordering.

15 / 35

Solving the Nonlinear Case
I We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton

algorithm.

1. Start with an initial guess for x(0),

2. compute the Jacobian of the error

H =
∂e(x)

∂x

∣∣∣∣
x=x(i)

, (15)

3. compute the Gauss-Newton step

δx(i) = −(HTWH)−1HTWe(x), (16)

4. update the estimate
x(i+1) = x(i) + αδx(i), (17)

5. and repeat until convergence.

I α is a step size (can be chosen with line search).

I Could also use Levenberg–Marquardt.

16 / 35

Solving the Nonlinear Case
I We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton

algorithm.

1. Start with an initial guess for x(0),

2. compute the Jacobian of the error

H =
∂e(x)

∂x

∣∣∣∣
x=x(i)

, (15)

3. compute the Gauss-Newton step

δx(i) = −(HTWH)−1HTWe(x), (16)

4. update the estimate
x(i+1) = x(i) + αδx(i), (17)

5. and repeat until convergence.

I α is a step size (can be chosen with line search).

I Could also use Levenberg–Marquardt.

16 / 35

Solving the Nonlinear Case
I We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton

algorithm.

1. Start with an initial guess for x(0),

2. compute the Jacobian of the error

H =
∂e(x)

∂x

∣∣∣∣
x=x(i)

, (15)

3. compute the Gauss-Newton step

δx(i) = −(HTWH)−1HTWe(x), (16)

4. update the estimate
x(i+1) = x(i) + αδx(i), (17)

5. and repeat until convergence.

I α is a step size (can be chosen with line search).

I Could also use Levenberg–Marquardt.

16 / 35

Solving the Nonlinear Case
I We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton

algorithm.

1. Start with an initial guess for x(0),

2. compute the Jacobian of the error

H =
∂e(x)

∂x

∣∣∣∣
x=x(i)

, (15)

3. compute the Gauss-Newton step

δx(i) = −(HTWH)−1HTWe(x), (16)

4. update the estimate
x(i+1) = x(i) + αδx(i), (17)

5. and repeat until convergence.

I α is a step size (can be chosen with line search).

I Could also use Levenberg–Marquardt.
16 / 35

The Linear Case
I Given linear process and measurement models,

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1, wk ∼ N (0,Qk), (18)
yk = Ckxk + vk, vk ∼ N (0,Rk), (19)

it follows that the error matrix e(x) can be written as

e(x) = Hx− z (20)

where x = [xT0 . . . xTK]T,

z =

x̌0

B0u0

...
BK−1uK−1

y0

y1

...
yK

, H =

1
−A0 1

.
−AK−1 1

−C0

−C1

. . .
CK

. (21)

17 / 35

The Linear Case

I The Gauss-Newton step becomes

δx(i) = −(HTWH)−1HTWe(x(i)), (22)

= −(HTWH)−1HTW(Hx(i) − z), (23)

= −x(i) + (HTWH)−1HTWz (24)

I The iterations x(i+1) = x(i) + δx(i) then reduce to a single solution for the optimal estimate

x̂ = (HTWH)−1HTWz. (25)

18 / 35

Starting with a Continuous-Time Model
I Suppose that we instead have a continuous time process model f(·) where

ẋ(t) = f(x(t),u(t),w(t)), w(t) ∼ N (0,Q(t)), (26)
yk = g(xk) + vk, vk ∼ N (0,Rk). (27)

I We can linearize about some trajectory x(t) = x̄(t) + δx(t), w(t) = 0 + δw(t), yk = g(x̄k) + δyk
to create a linear approximation for the perturbation dynamics

δẋ(t) = A(t)δx(t) + L(t)δw(t) δw(t) ∼ N (0,Q(t)), (28)
δyk = Ckδxk + vk δvk ∼ N (0,Rk). (29)

I Using a discretization scheme (zero-order-hold), we can create a discrete time equivalent
model

δxk = Ak−1δxk−1 + δwk−1 δwk−1 ∼ N (0,Qk−1), (30)
δyk = Ckδxk + δvk δvk ∼ N (0,Rk), (31)

where δxk = xk − f(x̄k−1,uk−1, 0) and δyk = yk − g(x̄k).
19 / 35

Starting with a Continuous-Time Model
I To proceed with the batch MAP framework, we set the linearization points to simply be our

current best state estimate x̄k−1 = x̂(i)
k−1 at iteration i.

I The state is given by

xk = x̄k + δxk = f(x̂(i)
k−1,uk−1) + Ak−1δxk−1 + δwk−1 (32)

= f(x̂(i)
k−1,uk−1) + Ak−1(xk−1 − x̂(i)

k−1) + δwk−1 (33)

= Ak−1xk−1 + f(x̂(i)
k−1,uk−1)− Ak−1x̂(i)

k−1︸ ︷︷ ︸
,uk−1

+wk−1 (34)

and so it follows that xk ∼ N (Ak−1xk−1 + uk−1,Qk−1).

I This produces a linear batch problem with the error written as e(x) = Hx− z, and as usual,

δx̂(i) = −(HTWH)−1HTWe(x̂(i)) (35)

x̂(i+1) = x̂(i) + αδx̂(i) (36)

I We then recompute (35) at the new state estimate, and this is repeated until convergence.
20 / 35

Estimate Mean and Covariance

I The solution to our optimization problem gave us the mode of our state distribution,
p(x|x̌0,u, y).

I It is useful to also know its mean and covariance.

I For this, it is more convenient to use the information form of a Gaussian PDF.

21 / 35

Information Form of a Gaussian Distribution
I Recall that a Gaussian PDF is given by

p(x) = N (µ,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (37)

I We can expand and manipulate the inside of the exp(·) to give

p(x) =
1√

(2π)n detΣ
exp

(
−1

2
(xTΣ−1x− 2µTΣ−1x + µTΣ−1µ)

)

(38)

=
exp(− 1

2 (µTΣ−1µ))√
(2π)n detΣ

exp

(
−1

2
xTΣ−1x + µTΣ−1x

)

(39)

=
exp(− 1

2 (ηTΛ−1η))√
(2π)n detΛ−1

exp

(
−1

2
xTΛx + ηTx

)

(40)

where we have defined Λ = Σ−1 as the information matrix and η = Λµ as the information
vector.

22 / 35

Information Form of a Gaussian Distribution
I Recall that a Gaussian PDF is given by

p(x) = N (µ,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (37)

I We can expand and manipulate the inside of the exp(·) to give

p(x) =
1√

(2π)n detΣ
exp

(
−1

2
(xTΣ−1x− 2µTΣ−1x + µTΣ−1µ)

)
(38)

=
exp(− 1

2 (µTΣ−1µ))√
(2π)n detΣ

exp

(
−1

2
xTΣ−1x + µTΣ−1x

)

(39)

=
exp(− 1

2 (ηTΛ−1η))√
(2π)n detΛ−1

exp

(
−1

2
xTΛx + ηTx

)

(40)

where we have defined Λ = Σ−1 as the information matrix and η = Λµ as the information
vector.

22 / 35

Information Form of a Gaussian Distribution
I Recall that a Gaussian PDF is given by

p(x) = N (µ,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (37)

I We can expand and manipulate the inside of the exp(·) to give

p(x) =
1√

(2π)n detΣ
exp

(
−1

2
(xTΣ−1x− 2µTΣ−1x + µTΣ−1µ)

)
(38)

=
exp(− 1

2 (µTΣ−1µ))√
(2π)n detΣ

exp

(
−1

2
xTΣ−1x + µTΣ−1x

)
(39)

=
exp(− 1

2 (ηTΛ−1η))√
(2π)n detΛ−1

exp

(
−1

2
xTΛx + ηTx

)

(40)

where we have defined Λ = Σ−1 as the information matrix and η = Λµ as the information
vector.

22 / 35

Information Form of a Gaussian Distribution
I Recall that a Gaussian PDF is given by

p(x) = N (µ,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (37)

I We can expand and manipulate the inside of the exp(·) to give

p(x) =
1√

(2π)n detΣ
exp

(
−1

2
(xTΣ−1x− 2µTΣ−1x + µTΣ−1µ)

)
(38)

=
exp(− 1

2 (µTΣ−1µ))√
(2π)n detΣ

exp

(
−1

2
xTΣ−1x + µTΣ−1x

)
(39)

=
exp(− 1

2 (ηTΛ−1η))√
(2π)n detΛ−1

exp

(
−1

2
xTΛx + ηTx

)
(40)

where we have defined Λ = Σ−1 as the information matrix and η = Λµ as the information
vector.

22 / 35

Information Form of a Gaussian Distribution
I Recall that a Gaussian PDF is given by

p(x) = N (µ,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (37)

I We can expand and manipulate the inside of the exp(·) to give

p(x) =
1√

(2π)n detΣ
exp

(
−1

2
(xTΣ−1x− 2µTΣ−1x + µTΣ−1µ)

)
(38)

=
exp(− 1

2 (µTΣ−1µ))√
(2π)n detΣ

exp

(
−1

2
xTΣ−1x + µTΣ−1x

)
(39)

=
exp(− 1

2 (ηTΛ−1η))√
(2π)n detΛ−1

exp

(
−1

2
xTΛx + ηTx

)
(40)

where we have defined Λ = Σ−1 as the information matrix and η = Λµ as the information
vector.

22 / 35

Information Form of a Gaussian Distribution

Information Form of a Gaussian Distribution
In summary, a Gaussian PDF can equivalently be expressed in information form, denoted
N−1(η,Λ) = N (µ,Σ), where

N−1(η,Λ) = β exp

(
−1

2
xTΛx + ηTx

)
, (41)

where
I β is a normalization constant given in (40),
I Λ = Σ−1 is called the information matrix, and
I η = Λµ is called the information vector.

23 / 35

Estimate Mean and Covariance - The Linear Case
I In the linear case, the PDF of x is

p(x|x̌0,u, y) =
1√

(2π)K(n+p) det W−1︸ ︷︷ ︸
some constant β

exp

(
−1

2
(Hx− z)TW(Hx− z)

)
. (42)

I We can manipulate the inside of the exponential to get

p(x|x̌0,u, y) = β exp

(
−1

2
(xTHT − zT)W(Hx− z)

)
, (43)

= β exp

(
−1

2
(xTHTWHx− 2zTWHz + zTWz)

)
, (44)

= β exp(−1

2
zTWz)︸ ︷︷ ︸

new constant κ

exp

(
− 1

2
xT HTWH︸ ︷︷ ︸

Σ−1=Λ

x + (HTWz)T︸ ︷︷ ︸
ηT

x
)

(45)

which is exactly in the information form of a Gaussian PDF.

24 / 35

Estimate Mean and Covariance - The Linear Case

I Hence, from

p(x|x̌0,u, y) = κ exp

(
− 1

2
xT HTWH︸ ︷︷ ︸

Σ−1=Λ

x + (HTWz)T︸ ︷︷ ︸
ηT

x
)

(46)

we see that Λ = HTWH is the information matrix, and η = HTWz is the information vector.

I Given the information matrix and information vector, it is easy to extract the covariance and
mean with

Σ = Λ−1 (47)

= (HTWH)−1 (48)
µ = Ση (49)

= (HTWH)−1HTWz = x̂ (50)

I In the linear case, the mean of the distribution is also the mode.

25 / 35

Estimate Mean and Covariance - The Nonlinear Case
I In the nonlinear case, the PDF of x is

p(x|x̌0,u, y) = β exp

(
−1

2
e(x)TWe(x)

)
. (51)

which is not Gaussian.

I However, we can approximate it as a Gaussian using a the first-order approximation evaluated
at our estimate x̂

e(x) ≈ e(x̂)︸︷︷︸
ē

+H(x− x̂). (52)

I This leads to,

p(x|x̌0,u, y) ≈ β exp

(
−1

2
(ēT + (x− x̂)THT)W(ē + H(x− x̂))

)
, (53)

· · ·

= κ exp

(
− 1

2
xT HTWH︸ ︷︷ ︸

Λ

x + (HTWHx̂−HTWē)T︸ ︷︷ ︸
ηT

x
)
. (54)

26 / 35

Estimate Mean and Covariance - The Nonlinear Case
I Hence, from

p(x|x̌0,u, y) ≈ κ exp

(
− 1

2
xT HTWH︸ ︷︷ ︸

Λ

x + (HTWHx̂−HTWē)T︸ ︷︷ ︸
ηT

x
)

(55)

we see that Λ = HTWH is the information matrix, and η = HTWHx̂−HTWē is the information
vector.

I Given the information matrix and information vector, it is easy to extract the covariance and
mean with

Σ = Λ−1 (56)

= (HTWH)−1 (57)
µ = Ση (58)

= x̂− (HTWH)−1HTWē︸ ︷︷ ︸
should converge to 0

(59)

27 / 35

Batch Estimation on Matrix Lie Groups
I The invariant framework can be leveraged for batch estimation problems where the state is an

element of a matrix Lie group.

I Let the state be represented by an element of a matrix Lie group, X ∈ G, with process and
measurement models given by

Ẋ(t) = F (X(t),u(t),w(t)), (60)
yk = gk(Xk) + vk. (61)

I Linearization using any perturbation definition will lead to

δξ̇(t) = A(t)δξ(t) + L(t)δw(t), (62)
δyk = Ckδξk + vk, (63)

I Discretization using any scheme (zero-order-hold, euler) will lead to

δξk = Ak−1δξk−1 + δwk (64)
δyk = Ckδξk + vk, (65)

28 / 35

Batch Estimation on Matrix Lie Groups

I After the discretization, a corresponding nonlinear discrete time process model will have the
form

Xk = F(Xk−1,uk−1,wk−1) (66)

I Starting from an initial guess X̌0, the error in the initial guess can be defined using the left-or
right invariant error definition, with the left-invariant initial error is given by

exp
(

eL
0

∧)
= EL

0 = X−1
0 X̌0, (67)

and the right-invariant initial error is given by

exp
(

eR
0

∧)
= ER

0 = X̌0X−1
0 . (68)

29 / 35

Batch Estimation on Matrix Lie Groups

I The error due to the input is denoted Eu,k ∈ G, and can also be defined in a left- or
right-invariant sense.

I The left-invariant error due to the input is given by

exp
(

eL
u,k

∧)
= EL

u,k = X−1
k Fk−1 (Xk−1,uk−1, 0) , (69)

whereas the right-invariant error due to the input is given by

exp
(

eR
u,k

∧)
= ER

u,k = Fk−1 (Xk−1,uk−1, 0) X−1
k . (70)

30 / 35

Batch Estimation on Matrix Lie Groups
I Leveraging the invariant framework, recall that left- and right-invariant measurements are of

the form

yL
k = Xkbk + vk, (71)

yR
k = X−1

k bk + vk, (72)

where bk is some known column matrix.

I For left-invariant measurements, the measurement error is defined by

eL
y,k = Xk

(
yL
k − gk (Xk, 0)

)
, (73)

as is done in the IEKF.

I For right-invariant measurements, the measurement error is defined by

eR
y,k = X−1

k

(
yR
k − gk (Xk, 0)

)
. (74)

31 / 35

Batch Estimation on Matrix Lie Groups
I Using the invariant error definitions, the errors in the initial guess, the errors due to input, and

the measurement errors can then be stacked as

e(X) =

e0

eu,1
...

eu,K
ey,0

...
ey,K

. (75)

I For a group affine process model and a left-or right-invariant measurement model, the
Jacobian of the error, written

H =
∂e(X)

∂δξ

∣∣∣∣
X=X(i)

, (76)

is state-estimate independent.

32 / 35

Batch Estimation on Matrix Lie Groups
I The Gauss-Newton algorithm becomes the following.

1. Start with an initial guess for X̌0,

2. compute the Jacobian of the error

H =
∂e(X)

∂δξ

∣∣∣∣
X=X(i)

. (77)

3. compute the Gauss-Newton step

δξ(i) = −(HTWH)−1HTWe(X(i)), (78)

where δξ(i) = [δξ
(i)T

0 , . . . , δξ
(i)T

K]T,

4. update the estimate for all k = 0, . . . ,K, using the appropriate left-invariant or right-invariant
correction step given respectively by

X(i+1)
k = X(i)

k exp
(
−αδξ(i)∧

k

)
, (79)

X(i+1)
k = exp

(
−αδξ(i)∧

k

)
X(i)

k , (80)

where α is a line search parameter,

5. and repeat until convergence.
33 / 35

Closing Remarks

I MAP/batch estimation is one of the most accurate and robust state estimation techniques we
have today.

I However, in this form, it is not appropriate for real-time state estimation, because the
complexity continues to grow as the state history gets larger and larger.

I There are many alternatives to the Gauss-Newton algorithm, such as the Levenberg-Marquart
algorithm, which may have better performance.

I The matrix (HTWH) is block tri-diagonal and sparse, which allows for efficient techniques to
solve the Gauss-Newton step.

34 / 35

References

For more details, see [1]

[1] T. Barfoot, State Estimation for Robotics. Toronto, ON: Cambridge University Press, 2019.

35 / 35

	References

