Batch State Estimation
— Using All Available Data for Estimation —

Charles C. Cossette and Prof. James Richard Forbes

McGill University, Department of Mechanical Engineering

+ McGill

November 7, 2022

1/35

Problem Statement
> Consider the following process and measurement models,

X, = f(Xk_l,llk_l) + Wg_1, k=1,...,
Vi = g(Xk) + Vi, k=0,...,

= =

2/35

Problem Statement

> Consider the following process and measurement models,
(1)
(2)

X = f(Xp—1, 1) + W1, k=1,...,K
Yr = g(Xx) + Vi, k=o0,... K.

> Suppose we have access to all the inputs u, and outputs yi, as well as an uncertain estimate
of the initial state,
xo ~ N (X, Py). (3)

> How do we find the “best” estimate of the all of states, all at once, using all the data available?

2/35

Problem Statement
> Consider the following process and measurement models,

Xy = f(Xp_1,0p—1) + Wg_1, k=1,....K (1)
Vi = g(Xk) + Vi, k=0,...,K. 2)

> Suppose we have access to all the inputs u, and outputs yi, as well as an uncertain estimate
of the initial state,
xo ~ N (X, Py). (3)

> How do we find the “best” estimate of the all of states, all at once, using all the data available?
» This is the batch state estimation problem.
» The notation
=Xo.x = {X0,-.-, XK },
=ug.x = {ug,...,ux},
Y =Yo.x ={Yo,-- -, YK},
will be used.

2/35

Batch Estimation

6 Iteration 0 6 Iteration 1 6 Iteration 2 6 Iteration 3
4 4 4 4
2 2 2 2
Eo 0 0 0
>
2 2 2 2
4 4 4 4
6 6 © 6 6
6 4 2 0 2 4 6 -6 4 2 0 2 4 6 6 4 2 0 2 4 6 6 4 2 0 2 4 6
z (m) x (m) z (m) z (m)

Figure 1: (red) Ground truth trajectory. (blue) Estimated trajectory.
Simulation of the estimation of a ground robot’s trajectory using batch estimation.

3/35

Batch Estimation vs. Extended Kalman Filter

6 Norm of Estimation Error

EKF
14 F Batch Solution

4/35

Maximum A Posteriori
> One strategy is to find the maximum a posteriori estimate, which is the solution to

X = arg max p(x[Xo, u, y). (4)
X

W

A
p(X‘y7ll>X0)

Hy

Figure 2: The MAP estimate finds the largest overall value of p

—~

X|5{0,ll7 Y)

5/35

Maximum A Posteriori
> One strategy is to find the maximum a posteriori estimate, which is the solution to

X = arg max p(x[Xo, u, y). (4)
X

W

A
p(x|y, u,X)

Hy

Figure 2: The MAP estimate finds the largest overall value of p

—~

X|X07U7Y)'

> Note that this is the mode of the distribution, as opposed to the mean.

5/35

Maximum A Posteriori
> One strategy is to find the maximum a posteriori estimate, which is the solution to

& = arg max p(x[%o, ., y). (4)
X

W

A
p(x|y, u,X)

Hy

Figure 2: The MAP estimate finds the largest overall value of p

—~

X|X07u7Y)'

> Note that this is the mode of the distribution, as opposed to the mean.

> The next few steps consist of manipulating p(x|xy, u,y) into a form so that a gradient-based
optimization algorithm (i.e., Gauss-Newton) can be used. 5/55

Maximum A Posteriori
> Bayes’ rule can be used to reformat the problem,

X = arg max p(¥Ix, %o, l})p(x|x07 u) 5)
x p(¥[Xo, u)
= arg max ap(y|x, Xo, u)p(x|Xo, u), 6)
X

where the denominator has been lumped into a constant «, which does not depend on x.

6/35

Maximum A Posteriori
> Bayes’ rule can be used to reformat the problem,

X = arg max p(¥Ix, %o, l})p(x|x07 u) 5)
x p(¥[Xo, u)
= arg max ap(y|x, Xo, u)p(x|Xo, u), 6)
X

where the denominator has been lumped into a constant «, which does not depend on x.
» Two simplifying assumptions will be made.

6/35

Maximum A Posteriori
> Bayes’ rule can be used to reformat the problem,

X = arg max p(¥Ix, %o, l})p(x|x07 u) 5)
x p(¥[Xo, u)
= arg max ap(y|x, Xo, u)p(x|Xo, u), 6)
X

where the denominator has been lumped into a constant «, which does not depend on x.
» Two simplifying assumptions will be made.
1. From our measurement model y, = g(xx) + v, We can write
p(Y&|x, X0, w) = p(yx|xk) @)

since yy is only conditioned on xy.

6/35

Maximum A Posteriori
> Bayes’ rule can be used to reformat the problem,

X = arg max p(¥Ix, %o, l})p(x|x07 u) 5)
x p(¥[Xo, u)
= arg max ap(y|x, Xo, u)p(x|Xo, u), 6)
X

where the denominator has been lumped into a constant «, which does not depend on x.
» Two simplifying assumptions will be made.
1. From our measurement model y, = g(xx) + v, We can write
p(Y&|x, X0, w) = p(yx|xk) @)
since yy is only conditioned on xy.
2. From our process model, we can write
P(Xk[X0:k—1,U0:x, %0) = P(Xk|Xp—1, 1) (8)

since x, is only conditioned on x;_1,ux_1 (the Markov assumption).

6/35

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(¥|x) = p(Yo:x|X0:x) = p(Yo,¥1:k |X0:K)

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(¥|x) = p(Yo:x|X0:x) = p(Yo,¥1:k |X0:K)
= p(Y0|Y1;K, Xo:K)p(Y1:K|Xo:K)

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(¥|x) = p(Yo:x|X0:x) = p(Yo,¥1:k |X0:K)
= p(Y0|Y1;K, Xo:K)p(Y1:K|Xo:K)
= p(yo|x0)p(¥y1:x [X0:x)

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(¥|x) = p(Yo:x|X0:x) = p(Yo,¥1:k |X0:K)
p(Y0|Y1;K, XO:K)p(Y1:K|XO:K)
= p(yo|x0)p(¥y1:x [X0:x)

=

P(Yr|Xk)-
0

o>
I

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(¥|x) = p(Yo:x|X0:x) = p(Yo,¥1:k |X0:K)
p(Y0|Y1;K, XO:K)p(Y1:K|XO:K)
= p(yo|x0)p(¥y1:x [X0:x)

=

P(Yr|Xk)-
0

o>
I

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(¥|x) = p(Yo:x|X0:x) = p(Yo,¥1:k |X0:K)
p(Y0|Y1;K, XO:K)p(Y1:K|XO:K)
= p(yo|x0)p(¥y1:x [X0:x)

=

P(Yk|Xk)-
0

o>
I

> Similarly,

p(x|i07 u) = p(XO‘XlzKa iOa UO:K)p(X1:K|iO, uO:K)

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(¥|x) = p(Yo:x|X0:x) = p(Yo,¥1:k |X0:K)
p(Y0|Y1;K, XO:K)p(Y1:K|XO:K)
= p(yo|x0)p(¥y1:x [X0:x)

=

P(Yk|Xk)-
0

o>
I

> Similarly,

p(x|i07 u) = p(XO‘XlzKa iOa UO:K)p(X1:K|iO, uO:K)

= p(Xo[X0)p(XK [X1: K1, X0, Wo:)P (X1: K —1|X0, Uo: K)

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(Y07Y1 K|Xo K)
p(Yoly1:x» Xo: 1<) (Y1:K|X0:K)
P(0|X0) (Y1:K|X0:K)

p(y[x) = p(yo.x|X0:x) =

P(Yk|Xk)-

o~
I

I
== <

> Similarly,

p(x|i07 u) = p(XO‘XlzKa iOv UO:K)p(X1:K|iO, uO:K)
= p(Xo[X0)p(XK [X1: K1, X0, Wo:)P (X1: K —1|X0, Uo: K)

= p(Xo|X0)p (XK |XK—1, Uk —1)p(X1. K —1|X0, Uo. k)

7135

Factored Joint Likelihood

> These assumptions allow us to “split” the PDFs into their factored joint likehoods

p(Y07Y1 K|Xo K)
p(Yoly1:x» Xo: 1<) (Y1:K|X0:K)
P(0|X0) (Y1:K|X0:K)

p(y[x) = p(yo.x|X0:x) =

P(Yk|Xk)-

o~
I

I
== <

> Similarly,

p(x|i07 u) = p(XO‘XlzKa iOv UO:K)p(X1:K|iO, uO:K)
= p(Xo[X0)p(XK [X1: K1, X0, Wo:)P (X1: K —1|X0, Uo: K)

p(Xo[Xo)p (XK|XK71»qul)p(XlszlﬁiOauO:K)

p(Xo[%0) H (X |[Xp—1,Wp—1).

7135

Maximum A Posteriori

» Returning to the optimization problem, it can now be written as

K K
X = arginaxap(xdio) (H p(Xka—bllk—l)) <H P(kak:)> . 9)

k=1 k=0

8/35

Maximum A Posteriori

» Returning to the optimization problem, it can now be written as

K K
X = argmaxap (x0|%0) (H Xka_1,llk—1)> <H1)(YA»Xk;)> . (9)

k=0

> Minimizing the negative logarithm of (9) does not change the solution to the optimization
problem, as it is @ monotonically increasing function.

» Hence,

K K
X = argxminfln <o¢p(x0|io) <H p(Xka—l,llk:—l)> <H p(hx;ﬂ)) (10)

k=1 k=0

K
= argmin — Ina — In p(xg|Xp) — Zlnp(xk\xk,l,uk,l) — Zlnp(yﬂxk). (11)
X k=1 o=

8/35

Minimizing the Negative Logarithm

250

<200

—Inp(z|y)

-4100

150

Figure 3: The maximum of p(z|y) is at the same = value as the minimum of — In p(z|y). [1]

9/35

Using Gaussian Error Distributions

» The problem simplifies further if the probability density functions in (11) are assumed to be
Gaussian distributions,

. 1 1 C \Tp—1 .)
Xo|Xg) = ————exp | —= (X0 — Xo) ' P; ' (x0 — X0) |,
p(Xo[X0) R P(2(0 —Xo) Py (X0 — Xo)
(XelX 1,0 1) = e
P(XE | Xkp—1,Uk—1 (27r)”detQk

1 _
e (= m MmO e MOk w)).

p(Yr|xk) = \/(%;TRICGXP <_;(Yk - g(Xk))TRZI(Yk - g(xk)))

10/35

Using Gaussian Error Distributions
» The cost function then becomes
. . 1 1 1
X = argmin — Ilna — In —In —In
x (2m)™ det Py (2m)™ det Qy, (2m)™ det Ry,
1
+ <2(X0 —)v(o)TP(Tl(XO —)20))

K

+Z < (xp — f(Xp—1,ux_1)) Q;l(xkf(xk—lauk—l))>
+Z < (ye — 8(xx) "Ry (yi — g("k)))-
> The first four terms are independent of x, and can be lumped into a single constant a.

11/35

Using Gaussian Error Distributions
> Finally, by defining

[eo(x)
eu’%(X) eo(X) =X —)20,
e(x)=| e, x(x) |, where e,i(x)=x;—f(xt_1,u;-1,0),
e,,0(x)
ey,k‘(x) =Y — g(xls‘a 0)7
| ey, x(x) |

W =diag(P, ', Q. .., QL Ry R,

the optimization problem becomes

1
% = argmin —e(x)"We(x) + a,
X

which is a weighted nonlinear least squares problem!

> Drop the o term.

12/35

Summary of MAP Estimation

Maximum A Posteriori
In summary, the optimization problem

X = arg max p(X|Xg, u,y) (13)
is completely equivalent to
X = arg min %e(x)TWe(x)7 (14)

where e(x), W have been defined previously,
1. we assume that p(y|x, X0, u) = p(yx|xx),
2. we assume that p(xg|X1.4—1, 1.5, X0) = p(Xk|Xk—1,0x_1), and
3. we assume that the PDFs p(xo|X), p(Xk|Xk—1,ux—1), p(yx|xx) are Gaussian.

13/35

An Aside on Matrix Construction
» When constructing the batch matrices, the order of states and errors is arbitrary.

> |t is equally mathematically valid to choose any ordering, so long as the construction of the
matrices is consistent with the ordering.

» Some orderings provide computational benefits (sparsity in matrices).

| Cuk Cuk+l Cyk-l Cyk Cyk+l O Xkl Xk Kkel
I t + t t i k t t i
Cuk
X = {Xp—1,Xp, Xp+1} T
€y k+1
€y,k—1(X) +
ey k(X) Cuk-t
e(x) =
e, r(x) Cyk
ey k+1(X) i
€y k+1
Error Vector Weight Matrix Jacobian Matrix

Figure 4: One choice of state and error ordering.

14/35

An Aside on Matrix Construction
» When constructing the batch matrices, the order of states and errors is arbitrary.

> It is equally mathematically valid to choose any ordering, so long as the construction of the
matrices is consistent with the ordering.

> Some orderings provide computational benefits (sparsity in matrices).

€yktl €yk—1 Cuk+l €uk Cyk Xp Xpil Xpo1
k t t t + { k t + {
€y k+1
X = {Xp, Xp+1,Xp—1} +
€yk—1
ey k+1(X) +
€y k+1
e(x) = | eyr(x) T
€y k—1(X) Cuk
€y k(X) T
Cyk
Error Vector Weight Matrix Jacobian Matrix

Figure 5: Another choice of state and error ordering.

15/35

Solving the Nonlinear Case

> We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton
algorithm.

1. Start with an initial guess for x(©,

16/35

Solving the Nonlinear Case

> We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton
algorithm.

1. Start with an initial guess for x(©,

2. compute the Jacobian of the error

x=x(%)

16/35

Solving the Nonlinear Case

> We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton
algorithm.

1.
2.

Start with an initial guess for x(¥),

compute the Jacobian of the error
Oe(x)
H= 1
x|’ (15)
compute the Gauss-Newton step
6x = —(H"WH) "H" We(x), (16)
update the estimate _ , ,
x0T = x® ¢ asx®, (17)

and repeat until convergence.

16/35

Solving the Nonlinear Case

> We must use iterative nonlinear least-squares algorithms, such as the Gauss-Newton
algorithm.

1.
2.

5.

Start with an initial guess for x(¥),

compute the Jacobian of the error
Oe(x)
H= 1
x|’ (15)
compute the Gauss-Newton step
6x = —(H"WH) "H" We(x), (16)
update the estimate _ , ,
x0T = x® ¢ asx®, (17)

and repeat until convergence.

> «is a step size (can be chosen with line search).

> Could also use Levenberg—Marquardt.

16/35

The Linear Case
> Given linear process and measurement models,

Xp = Agp—1Xg—1 + Br_1up 1 + W1, wi ~ N(0,Qx), (18)
Vi = CpXp + Vg, vi ~ N(0,Ry), (19)
it follows that the error matrix e(x) can be written as
e(x) =Hx —z (20)
where x = [x{ ... xk|T,
_ % - 1 :
Boug —Ay 1
z— BKf)l,(l)lel , H— e Ag-1 1 21)
y1 -C
i Vi l I Cx |

17/35

The Linear Case

» The Gauss-Newton step becomes

ox = —(H"WH) 'H" We(x("), (22)
= —(H'WH) 'H"W(Hx" — z), (23)
= —x 4+ (H'WH) 'H"Wz (24)

» The iterations x(“+1) = x(V) 1 §x(¥) then reduce to a single solution for the optimal estimate

x=(H'"WH) 'H'Wz. (25)

18/35

Starting with a Continuous-Time Model
> Suppose that we instead have a continuous time process model f(-) where

X(t) = f(x(t),u(t), w(t)), w(t) ~ N(0,Q(1)), (26)
Vi = 8(Xx) + Vi, vi, ~ N(0,Ry,). (27)

> We can linearize about some trajectory x(t) = x(¢) + 0x(t), w(t) = 0 + dw(¢), yr = g(Xr) + dyx
to create a linear approximation for the perturbation dynamics

ox(t) = A(t)ox(t) + L(¢t)ow(t) dw(t) ~ N(0,Q(t)), (28)

0y = Croxy + Vi OV ~ N(O, Rk) (29)

> Using a discretization scheme (zero-order-hold), we can create a discrete time equivalent
model

O0Xp = Ap_10Xp_1 + 0WL_1 OWj_1 ~ N(()» Qkfl)a (30)
5Yk = Ckéxk + §Vk 5Vk ~ N(kak)a (31)

where 0x;, = x;, — f(Xx_1,u,_1,0) and oy, = yr — g(Xx)-
19/35

Starting with a Continuous-Time Model
> To proceed with the batch MAP framework, we set the linearization points to simply be our
current best state estimate x,,_; = f(,(jll at iteration 1.

» The state is given by

Xp = X + 0% = FE wp_q) + Ap_16%5_1 + 6We_y (32)
=& 1) + Apor (xpm1 — X7) + Swi_y (33)
=Ap_1Xp_1 + f(f(,(fzp 1) — Akﬂﬁgl +Wp 1 (34)

B,

and so it follows that x;, ~ N (Ap_1Xp_1 + wg_1,Qx_1).
> This produces a linear batch problem with the error written as e(x) = Hx — z, and as usual,
6% = —(HTWH) 'H"We(x") (35)
10D = 30 4 a5x® (36)

» We then recompute (35) at the new state estimate, and this is repeated until convergence.

20/35

Estimate Mean and Covariance

» The solution to our optimization problem gave us the mode of our state distribution,
p(X|X07 u, Y)
> |t is useful to also know its mean and covariance.

» For this, it is more convenient to use the information form of a Gaussian PDF.

21/35

Information Form of a Gaussian Distribution
» Recall that a Gaussian PDF is given by

1

PO = N1 ®) = — e

- (;)T (- m) . (37)

22/35

Information Form of a Gaussian Distribution
> Recall that a Gaussian PDF is given by

) = N S) = ——_ex (;(xu)Tﬁl(Xu)>-

———¢
V(2m)n det X P

> We can expand and manipulate the inside of the exp(-) to give

1
——x"Zx—2u"Z x4+ MTE_lp))

1
p(x) = \/WGXP (B

22/35

Information Form of a Gaussian Distribution
> Recall that a Gaussian PDF is given by

) = N S) = ——_ex (;<xu>Tzl<xu>).

———¢
V(2m)n det X P

> We can expand and manipulate the inside of the exp(-) to give

1
——x"Zx—2u"Z x4+ MTE_lp))

1
p(x) = \/WGXP (B

—3(pTst 1
_ eXP(2(“ “)) exp (—XTE_lx + NTE_1X>
(2m)" det 2 2

22/35

Information Form of a Gaussian Distribution
> Recall that a Gaussian PDF is given by

p(x) =N(p, X) = - X <;(X —)= (x - H)) .

————— €
Jenrdes ¥

> We can expand and manipulate the inside of the exp(-) to give
p) = e (TR x2S TS)
(2m)r det X 2

_1 Ty-1 1
_ exp(—3(p ©)) exp (_XTE—1X+ NTE_1x>
(2m)"det X 2

exp(—3(nTA"'n)) (1 ¢ T >
= exp| —=x Ax+1mn'x
2rrdetA T P\ T2 K

22/35

Information Form of a Gaussian Distribution
> Recall that a Gaussian PDF is given by

px) = N, %) = m exp (3 x - = x - w). (37)
> We can expand and manipulate the inside of the exp(-) to give
p(x) = m exp (-é(xTz—lx P MTE_lp,)) (38)
_ eXp(é;;Tit;“)) exp (—;XTE_lx + uTE_1x> (39)
_ expgf)i";;‘:’?) exp (_;XTAX + nTx> (40)

where we have defined A = X! as the information matrix and n = Ap as the information
vector.

22/35

Information Form of a Gaussian Distribution

Information Form of a Gaussian Distribution

In summary, a Gaussian PDF can equivalently be expressed in information form, denoted
N=L(n,A) = N(u,X), where

N=Yn,A) = Bexp (—%XTAX + nTx) , (41)

where
> [is a normalization constant given in (40),
» A = X! is called the information matrix, and
» 1 = Ap is called the information vector.

23/35

Estimate Mean and Covariance - The Linear Case
» |n the linear case, the PDF of x is

1
2m)K0) dot W-1

some constant 3

p(x[Xp, 0, y) = 7 exp (—;(Hx —2z) 'W(Hx — z)) . (42)

» We can manipulate the inside of the exponential to get

1
plxisa..y) = Fexp (-~ (T~ 2T Witk). (43)
= Bexp (—;(XTHTWHX —22"WHz + zTWz)> , (44)
— 71 T 71 Tt T T
= Bexp(572 Wz) exp(5% H,YYII;IXJF (H' Wz)' x (45)
new constant x Ei= n

which is exactly in the information form of a Gaussian PDF.

24/35

Estimate Mean and Covariance - The Linear Case

» Hence, from

< L1yt Tyw,\T
p(X|X0,u,y) = Kexp <— -x HWHx+ (H Wz) x (46)
2 W_’E*1:A T

we see that A = HT"WH is the information matrix, and n = H" Wz is the information vector.

» Given the information matrix and information vector, it is easy to extract the covariance and

mean with
T=A" (47)
= (H'WH) ! (48)
n=3n (49)
= (H'"WH) 'H"Wz = x (50)

» In the linear case, the mean of the distribution is also the mode.

25/35

Estimate Mean and Covariance - The Nonlinear Case
» In the nonlinear case, the PDF of x is

bl .y) = Fexp (- e Wes)).)

which is not Gaussian.

> However, we can approximate it as a Gaussian using a the first-order approximation evaluated
at our estimate x

e(x) ~ e(X) +H(x — X). (52)
x
» This leads to,
plxlsa.0.3) = fexp (57 + (- %) THOW(E + H(x %)) (59)

= Kexp (T HTWHK + (H"WHx — H"We)" x>. (54)
2 =

T

n

26/35

Estimate Mean and Covariance - The Nonlinear Case
» Hence, from

g 1 R _
p(x[%o,u,y) ~ K exp (— 5xT HT:VHX + (H"WHx — H"We) ' x) (55)
nT

we see that A = HTWH is the information matrix, and n = H' WHx — H" We is the information
vector.

» Given the information matrix and information vector, it is easy to extract the covariance and

mean with
S=A" (56)
= (H"WH)! (57)
=3 (58)
=% — (H'WH) 'H"We (59)

should converge to 0

27/35

Batch Estimation on Matrix Lie Groups
» The invariant framework can be leveraged for batch estimation problems where the state is an
element of a matrix Lie group.

> Let the state be represented by an element of a matrix Lie group, X € G, with process and
measurement models given by

X(t) = F(X(t), u(t), w(t)), (60)
Vi = gk(Xk) + V. (61)
> Linearization using any perturbation definition will lead to
08(t) = A(1)0&(t) + L(1)ow(t), (62)
Oy = Cr0&) + Vi, (63)
> Discretization using any scheme (zero-order-hold, euler) will lead to

08y = Ap_10&x—1 + 6wy, (64)
Oyr = Crd&r + Vi, (65)

Batch Estimation on Matrix Lie Groups

> After the discretization, a corresponding nonlinear discrete time process model will have the
form

Xp =F(Xp_1, 061, Wi—1) (66)

» Starting from an initial guess X, the error in the initial guess can be defined using the left-or
right invariant error definition, with the left-invariant initial error is given by

exp (e](jA) = EX = X;'X,, (67)
and the right-invariant initial error is given by

exp (eg“) —ER = XX, 1. (68)

29/35

Batch Estimation on Matrix Lie Groups

> The error due to the input is denoted E,, 1, € G, and can also be defined in a left- or
right-invariant sense.

» The left-invariant error due to the input is given by
exp (e{j,k/\) =E;;, =X, "Fro1 (Xp—1,u6-1,0), (69)
whereas the right-invariant error due to the input is given by

AN _
exp (eik) —ER, = Fr (Xeo1,u51,0)X; L (70)

30/35

Batch Estimation on Matrix Lie Groups

> Leveraging the invariant framework, recall that left- and right-invariant measurements are of
the form

i = Xiby + v, (71)
yi =X, 'by, + vy, (72)
where by, is some known column matrix.

> For left-invariant measurements, the measurement error is defined by

ey, = Xi (¥§ — & (Xi,0)), (73)
as is done in the IEKF.

» For right-invariant measurements, the measurement error is defined by

eik =X; " (y§ — g (X,0)) . (74)

31/35

Batch Estimation on Matrix Lie Groups

» Using the invariant error definitions, the errors in the initial guess, the errors due to input, and
the measurement errors can then be stacked as

€0
eu,l

e(X): eu7K . (75)
ey’o

€y, K

> For a group affine process model and a left-or right-invariant measurement model, the
Jacobian of the error, written

is state-estimate independent.

32/35

Batch Estimation on Matrix Lie Groups
» The Gauss-Newton algorithm becomes the following.

1. Start with an initial guess for Xo,

2. compute the Jacobian of the error
de(X)

H= . (77)
90E |x_x»
3. compute the Gauss-Newton step
66 = —(H"WH) 'H"We(X"), (78)
where 6¢ = [5e, ... 5T,
4. update the estimate for all k = 0, ..., K, using the appropriate left-invariant or right-invariant
correction step given respectively by
Xgﬂ) = Xg) exp (—aé{,ﬁi)A) , (79)
X(*Y = exp (—adel") X, (80)

where « is a line search parameter,

5. and repeat until convergence.
33/35

Closing Remarks

» MAP/batch estimation is one of the most accurate and robust state estimation techniques we
have today.

> However, in this form, it is not appropriate for real-time state estimation, because the
complexity continues to grow as the state history gets larger and larger.

> There are many alternatives to the Gauss-Newton algorithm, such as the Levenberg-Marquart
algorithm, which may have better performance.

» The matrix (H"WH) is block tri-diagonal and sparse, which allows for efficient techniques to
solve the Gauss-Newton step.

34/35

References

For more details, see [1]

[1] T. Barfoot, State Estimation for Robotics. Toronto, ON: Cambridge University Press, 2019.

35/35

	References

