Graph Theory

- The absolute basics -
- ... and some example decentralization problems -

Charles C. Cossette

McGill University, Department of Mechanical Engineering

June 9, 2022

Introduction

Graph theory is ubiquitous in robotics and computer science.

Multi-robot problems, path planning, and batch estimation factor graphs ${ }^{1}$ all make use of graph theory.

[^0]
Introduction

The examples we will cover are

1. decentralized consensus (largely taken from [1]),
2. decentralized multi-robot formation control (largely taken from [2]).

Some initial definitions

Definition (set)

A set is an unordered list of unique mathematical objects. A set is denoted with curly $\}$ brackets.

$$
\mathcal{S}=\{1,2,3\}=\{2,1,1,3\} .
$$

Definition (ordered pair)

An ordered pair, 2-tuple, or simply a pair is a list of mathematical objects where the order of the objects has significance. An ordered pair or any n-tuple is denoted with circular () brackets.

$$
\mathcal{P}=(a, b) \neq(b, a) .
$$

Definition (Cartesian product)

The Cartesian product of two sets $\mathcal{A} \times \mathcal{B}$ is the set of all ordered pairs of the elements of \mathcal{A} and \mathcal{B}.

$$
\mathcal{A} \times \mathcal{B}=\{(a, b) \mid a \in \mathcal{A}, b \in \mathcal{B}\}
$$

Some initial definitions

Notation (number of elements)
The number of elements in a set \mathcal{S} is denoted $|\mathcal{S}|$.

Graphs: Definitions

Definition (Directed Graph)

A directed graph or digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ consists of

- a set of nodes $\mathcal{V}=\{1, \ldots N\}$ and
- a set of edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.

The set of edges consists of ordered pairs

$$
\begin{equation*}
(i, j) \in \mathcal{E} \tag{1}
\end{equation*}
$$

between some of the nodes.

- j is called the child of i.
- i is called the parent of j.
- Arrows usually point from the parent to the child.

Figure 1: A simple graph with three nodes.

$$
\mathcal{V}=\{1,2,3\}, \mathcal{E}=\{(1,2),(2,3),(3,1),(3,2)\}
$$

Graphs: Definitions

Definition (Neighbors)

The set of out-neighbors or successors $\mathcal{N}_{i}^{\text {out }}$ of i is equivalent to all of its children, and is defined as,

$$
\mathcal{N}_{i}^{\text {out }}=\{j \in \mathcal{V} \mid(i, j) \in \mathcal{E}\} .
$$

The set of in-neighbors or predecessors $\mathcal{N}_{i}^{\text {in }}$ of i is equivalent to all of its parents, and is defined as,

$$
\mathcal{N}_{i}^{\text {in }}=\{j \in \mathcal{V} \mid(j, i) \in \mathcal{E}\} .
$$

Henceforth, the shorthand \mathcal{N}_{i} will refer to the out-neighbors.

$$
\begin{aligned}
\mathcal{N}_{1} & =\{2\} \\
\mathcal{N}_{2} & =\{3\} \\
\mathcal{N}_{3} & =\{1,2\}
\end{aligned}
$$

Graphs: Definitions

Definition (Undirected graph)

An undirected graph can be viewed as a directed graph, where any pair of connected nodes have an edge in both directions. That is, if

$$
(i, j) \in \mathcal{E} \quad \text { then } \quad(j, i) \in \mathcal{E}
$$

Definition (Subgraph)

A subgraph $\mathcal{S}=\left(\mathcal{V}_{s}, \mathcal{E}_{s}\right)$ of $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ consists of a subset of nodes of \mathcal{G}, and all edges in \mathcal{G} connecting pairs of nodes in that subset. That is,

$$
\begin{gathered}
\mathcal{V}_{s} \subset \mathcal{V} \\
\mathcal{E}_{s}=\left\{(i, j) \mid(i, j) \in \mathcal{E} \text { and } i, j \in \mathcal{V}_{s}\right\} .
\end{gathered}
$$

Graphs: Definitions

Definition (Directed path)

A directed path of \mathcal{G} is a sequence of the form

$$
\begin{equation*}
(i, j),(j, k), \ldots,(\ell, m) \tag{2}
\end{equation*}
$$

Definition (Strongly connected)

A graph is said to be strongly connected if there is a directed path from any node to
 any other node.

Definition (Strongly connected components)

A strongly connected component of \mathcal{G} is a subgraph that is strongly connected, and the addition of other nodes/edges to the subgraph will break strong-connectedness.

Weighted Graphs

- It is possible to associate weights with the edges in a graph. That is, the weight $w_{i j} \in \mathbb{R}_{\geq 0}$ can be associated with the edge (i, j).
- The weights are defined such that

$$
w_{i j}>0 \text { if }(i, j) \in \mathcal{E}
$$

and $w_{i j}=0$ otherwise.

- For unweighted graphs, one can assume all non-zero weights are equal to 1 .

Matrix Representations of Graphs: Adjacency Matrix

Definition (Adjacency Matrix)

The adjacency matrix \mathbf{A} is a $|\mathcal{V}| \times|\mathcal{V}|$ matrix with elements $a_{i j}=w_{i j}$.

- That is,

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & w_{12} & \cdots & w_{1 N} \\
w_{21} & 0 & & \\
\vdots & & & \\
w_{N 1} & & & 0
\end{array}\right]
$$

where $w_{i i}=0$ if there is no self-edge.

- For undirected graphs, the adjacency matrix is symmetric.

Matrix Representations of Graphs: Incidence Matrix

Definition (Incidence Matrix)

The incidence matrix Π is a $|\mathcal{V}| \times|\mathcal{E}|$ matrix, where each column corresponds to an edge. If a certain column k corresponds to the edge (i, j) then $\pi_{i k}=-1$, and $\pi_{j k}=1$.

- The column ordering is arbitrary.
- By definition, $\mathbb{1}^{\top} \boldsymbol{\Pi}=\mathbf{0}$, where $\mathbb{1}$ is a column of 1 's.

$$
\mathbb{1}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] .
$$

For columns corresponding to edges $(1,2),(2,3),(3,1),(3,2) \ldots$

$$
\boldsymbol{\Pi}=\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 1 \\
0 & 1 & -1 & -1
\end{array}\right]
$$

Matrix Representations of Graphs: Degree Matrix

Definition (Degree Matrix)

The degree matrix is defined as

$$
\mathbf{D}=\operatorname{diag}\left(\sum_{k \in \mathcal{N}_{1}} w_{1 k}, \ldots, \sum_{k \in \mathcal{N}_{N}} w_{N k}\right) .
$$

That is, it is a diagonal matrix containing the sum of each node's edges' weights.

$\mathbf{D}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$

Matrix Representations of Graphs: Laplacian Matrix

Definition (Laplacian Matrix)

The Laplacian matrix \mathbf{L} is an $|\mathcal{V}| \times|\mathcal{V}|$ matrix with elements given by [3]

$$
\ell_{i j}=\left\{\begin{array}{ll}
\sum_{k \in \mathcal{N}_{i}} w_{i k}, & \text { if } i=j \\
-w_{i j}, & \text { if } i \neq j
\end{array} .\right.
$$

- It can be shown that

$$
\mathbf{L}=\mathbf{D}-\mathbf{A} .
$$

(3)

Some Properties of the Laplacian Matrix

Trivial Eigenvalue

Since row sums of \mathbf{L} are always zero, $\mathbf{L} \mathbb{1}=\mathbf{0}$. It follows that $\lambda=0$ and $\mathbb{1}$ are always an eigenvalue and eigenvector of \mathbf{L}, respectively. This is called the trivial eigenvalue.

Eigenvalues and Connectivity [1]

Let \mathcal{G} be a strongly connected graph with N nodes. Then $\lambda=0$ is the single zero eigenvalue of \mathbf{L} (i.e., no repeated zero eigenvalues), and $\operatorname{rank}(\mathbf{L})=N-1$.

If \mathcal{G} has c strongly connected components, then the trivial eigenvalue will have multiplicity c and $\operatorname{rank}(\mathbf{L})=N-c$.

Non-negative real part of eigenvalues [1]
All nontrivial eigenvalues of \mathbf{L} have positive real parts.

Consensus

In a team of robots or agents, consensus refers to the robots all agreeing on a certain quantity of interest.

Examples:

- The agents need to achieve consensus on the room temperature, after each taking a noisy measurement.
- Robots needing to achieve consensus on the heading direction and velocity to travel in.
- Robots needing to agree on a "rendezvous" location.

Figure 2: A team of autonomous ground vehicles, with communication links represented as a graph.

Consensus

- Consider N agents, each possessing some sort of consensus state variable x_{i}.
- The task is to find some sort of consensus update law u_{i} where

$$
\dot{x}_{i}(t)=u_{i}, \quad x_{i}(0)=x_{0_{i}}, \quad i=1, \ldots, N,
$$

such that consensus is achieved, meaning all x_{i} converge to the same value,

$$
x_{1}=x_{2}=\ldots=x_{N} \triangleq \alpha .
$$

- The communication links are represented by the weighted directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
- The update law for agent $i, u_{i}=u_{i}\left(x_{j \in \mathcal{N}_{i}}\right)$, must strictly be a function of information from the agent's neighbors.

Consensus

- In [1], the following consensus law is proposed

$$
\begin{equation*}
\dot{x}_{i}=-\sum_{j \in \mathcal{N}_{i}} w_{i j}\left(x_{i}-x_{j}\right) . \tag{4}
\end{equation*}
$$

- Consider, for example, the first agent

$$
\begin{aligned}
\dot{x}_{1} & =-\sum_{j \in \mathcal{N}_{1}} w_{1 j}\left(x_{1}-x_{j}\right) \\
& =-\left(w_{12}\left(x_{1}-x_{2}\right)+\ldots+w_{1 N}\left(x_{1}-x_{N}\right)\right) \\
& =-\left[\begin{array}{llll}
\left(\sum_{j \in \mathcal{N}_{1}} w_{1 j}\right) & -w_{12} & \ldots & -w_{1 N}
\end{array}\right] \underbrace{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right]}_{\bigotimes_{\mathbf{x}}} \\
& =-\left[\ell_{11} \ell_{12} \ldots \ell_{1 N}\right] \mathbf{x},
\end{aligned}
$$

where $\ell_{i j}$ are the elements of the Laplacian matrix \mathbf{L} of the graph \mathcal{G}.

- The collective dynamics are therefore

$$
\dot{\mathbf{x}}=-\mathbf{L} \mathbf{x}
$$

Consensus

- Since all eigenvalues of $-\mathbf{L}$ are in the open left-hand plane, the system $\dot{\mathbf{x}}=-\mathbf{L x}$ is stable.
- Assuming that the interaction graph is strongly connected, then the system will only have a single non-zero equilibrium point.
- Let $\gamma=\left[\gamma_{1} \ldots \gamma_{N}\right]^{\top}$ be a left-eigenvector of \mathbf{L} (i.e. such that $\gamma^{\top} \mathbf{L}=\mathbf{0}$). The term

$$
\begin{equation*}
y(t) \triangleq \gamma^{\top} \mathbf{x}(t) \tag{5}
\end{equation*}
$$

is invariant since $\dot{y}(t)=-\gamma^{\top} \mathbf{L x}(t)=\mathbf{0}$.

- Hence, the final value that all the states converge to can be obtained from

$$
\begin{align*}
\lim _{t \rightarrow \infty} y(t) & =y(0) \tag{6}\\
\gamma^{\top} \mathbb{1} \alpha & =\gamma^{\top} \mathbf{x}_{0} \tag{7}\\
\alpha & =\frac{\gamma^{\top} \mathbf{x}_{0}}{\sum_{i=1}^{N} \gamma_{i}} \tag{8}
\end{align*}
$$

Consensus

In the case of an undirected graph, $\gamma=\mathbb{1}$ and

$$
\begin{equation*}
\alpha=\frac{\sum_{i=1}^{N} x_{0_{i}}}{N} \tag{9}
\end{equation*}
$$

i.e. the agents each converge to the average initial condition!

Figure 3: Each agent's individual consensus variable over time.

Formation control

- We seek to maintain a group of robots in a specified geometry.
- This can be convenient for coordinating groups of robots.
- Specify only the position and attitude of the group, instead of each agent.

Formation Control

- We can stay in formation simply by controlling the inter-robot distances.
- If all inter-robot distances are constant, the formation is said to be rigid.
- Therefore, we must design a controller that will keep all these inter-robot distances constant.

Formation Control

- Not all inter-robot distances must be regulated, but we still require a minimum.
- We can define an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where the nodes are the robots, and there is an edge if the distance between two robots is regulated.
- Note: now that we are working with an undirected graph, if $(i, j) \in \mathcal{E}$ then so is (j, i).

Figure 4: Flexible (left) and rigid (right) formations.

Formation control

- Let $\mathbf{r}_{a}^{i w}$ denote the position of robot i, relative to some common reference point w, in some common frame a.
- Let $\mathbf{r}=\left[\mathbf{r}_{a}^{1{ }^{\top}}, \ldots, \mathbf{r}_{a}^{N w}\right]^{\top}$. Define the rigidity function as the list of all squared inter-robot distances ${ }^{2}$:

$$
\phi(\mathbf{r})=\left[\begin{array}{c}
\vdots \tag{10}\\
\frac{1}{2}\left\|\mathbf{r}_{a}^{i j}\right\|^{2} \\
\vdots
\end{array}\right] \in \mathbb{R}^{|\mathcal{E}|}, \quad(i, j) \in \mathcal{E}
$$

- Approximating to first order,

$$
\begin{equation*}
\phi(\mathbf{r}+\delta \mathbf{r}) \approx \phi(\mathbf{r})+\mathbf{R}(\mathbf{r}) \delta \mathbf{r} \tag{11}
\end{equation*}
$$

where $\mathbf{R}(\mathbf{r})=\frac{\partial \phi(\mathbf{r})}{\partial \mathbf{r}}$ will be called the rigidity matrix.

- We want the inter-robot distances to remain constant with a small change in position $\delta \mathbf{r}$, hence $\phi(\mathbf{r}+\delta \mathbf{r})=\phi(\mathbf{r})$, leading to

$$
\begin{equation*}
\mathbf{R}(\mathbf{r}) \delta \mathbf{r}=\mathbf{0} \tag{12}
\end{equation*}
$$

[^1]
Formation control

- For n dimensions (i.e. $\mathbf{r}_{a}^{i w} \in \mathbb{R}^{n}$), the rigidity matrix will be $|\mathcal{E}| \times n|\mathcal{V}|$.
- In 3D, there are 6 degrees of freedom (3 translation, 3 rotation) that the entire formation can move, without changing inter-robot distances.
- Hence, we require that

$$
\begin{equation*}
\operatorname{rank}(\mathbf{R}(\mathbf{r}))=3|\mathcal{V}|-6 \tag{13}
\end{equation*}
$$

for a formation to be rigid.

Definition (Minimally rigid)

A rigid graph is said to be minimally rigid if the removal of a single edge causes it to lose rigidity.
In this case, in $3 \mathrm{D},|\mathcal{E}|=3|\mathcal{V}|-6$ and $\mathbf{R}(\mathbf{r})$ will be full row rank.

Formation control: Rigidity matrix example

$$
\mathbf{R}(\mathbf{r})=\left[\begin{array}{cccc}
\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)^{\top} & -\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)^{\top} & & -\left(\mathbf{r}_{1}-\mathbf{r}_{4}\right)^{\top} \\
\left(\mathbf{r}_{1}-\mathbf{r}_{4}\right)^{\top} & & & \\
& \left(\mathbf{r}_{2}-\mathbf{r}_{3}\right)^{\top} & -\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right)^{\top} & -\left(\mathbf{r}_{2}-\mathbf{r}_{4}\right)^{\top} \\
& \left(\mathbf{r}_{2}-\mathbf{r}_{4}\right)^{\top} & & \left(\mathbf{r}_{3}-\mathbf{r}_{4}\right)^{\top} \\
& & -\left(\mathbf{r}_{3}-\mathbf{r}_{4}\right)^{\top}
\end{array}\right]
$$

where

$$
\mathbf{r}_{i} \triangleq \mathbf{r}_{a}^{i w}
$$

Formation control

- Consider the error in squared distances $\mathbf{e}(t)=\left(\phi(\mathbf{r}(t))-\phi_{\text {des }}\right)$, as well as the Lyapunov function candidate

$$
V(t)=\frac{1}{2} \mathbf{e}(t)^{\top} \mathbf{e}(t) .
$$

- The time derivative of $V(t)$ is given by

$$
\begin{align*}
\dot{V}(t) & =\frac{\partial V}{\partial \mathbf{e}} \frac{\partial \mathbf{e}}{\partial \mathbf{r}} \frac{\mathrm{~d} \mathbf{r}}{\mathrm{~d} t} \\
& =\mathbf{e}(t)^{\mathrm{T}} \mathbf{R}(\mathbf{r}) \dot{\mathbf{r}} . \tag{14}
\end{align*}
$$

- If we assume that we control robot velocities then $\dot{\mathbf{r}}=\mathbf{u}$, and if we choose the control law to be $\mathbf{u}=-\mathbf{R}(\mathbf{r})^{\top} \mathbf{e}(t)$ then

$$
\dot{V}(t)=-\mathbf{e}(t)^{\top} \mathbf{R}(\mathbf{r}) \mathbf{R}(\mathbf{r})^{\top} \mathbf{e}(t) \leq 0
$$

since $\mathbf{R}(\mathbf{r}) \mathbf{R}(\mathbf{r})^{\top}$ is positive semi-definite.

- If the graph is minimally rigid, then $\mathbf{R}(\mathbf{r}) \mathbf{R}(\mathbf{r})^{\mathrm{T}}$ is positive definite and $\mathbf{e}(t) \rightarrow \mathbf{0}$ as $t \rightarrow \infty$.

Formation control

- The "stacked" control law is $\mathbf{u}=-\mathbf{R}(\mathbf{r})^{\top} \mathbf{e}(t)$ where $\mathbf{u}=\left[\begin{array}{lll}\mathbf{u}_{1} & \ldots & \mathbf{u}_{N}\end{array}\right]^{\top}$
- Breaking this down into components we have

$$
\begin{equation*}
\mathbf{u}_{i}=-\frac{1}{2} \sum_{j \in \mathcal{N}_{i}}\left(\left\|\mathbf{r}_{a}^{i j}\right\|^{2}-d_{\mathrm{des}}^{i j^{2}}\right) \mathbf{r}_{a}^{i j} \tag{15}
\end{equation*}
$$

Just the basics! Some other terms to watch out for

- Trees, spanning trees, forests
- Cliques
- Connectivity, algebraic connectivity

Searching Algorithms (shortest path algorithms)

- Breadth-first search
- Depth-first search
- Dijkstra's algorithms
- A* search

References

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in networked multi-agent systems," Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, 2007.
[2] M. de Queiroz, X. Cai, and M. Feemster, Formation Control of Multi-Agent Systems: A Graph Rigidity Approach. Chichester, West Sussex, United Kingdom: John Wiley \& Sons, Ltd, 2019.
[3] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks. Princeton University Press, 2014.

Theorem (Non-negative real part of eigenvalues)

For a directed weighted graph, all eigenvalues of \mathbf{L} have non-negative real part.

Proof.

The proof follows directly from use of Gershgorin's disk theorem, which states that

$$
\operatorname{spec}(\mathbf{L}) \subset \bigcup_{i \in\{1, \ldots, n\}}\left\{z \in \mathbb{C}\left|\left\|z-\ell_{i i}\right\| \leq \sum_{\substack{j=1 \\ j \neq i}}^{n}\right| \ell_{i j} \mid\right\}
$$

For the Laplacian matrix,

$$
\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|\ell_{i j}\right|=\ell_{i i} \geq 0
$$

since the weights are all strictly positive. Therefore, all of the Gershgorin disks contain the origin, but are strictly in the closed right-hand plane. Therefore, all eigenvalues of \mathbf{L} lie in the closed right-hand plane, and thus have non-negative real component.

[^0]: ${ }^{1}$ Figure taken from https://gtsam.org/tutorials/intro.html.

[^1]: ${ }^{2}$ Only include one of either (i, j) or (j, i) in the rigidity function.

