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Introduction
Graph theory is ubiquitous in robotics and computer science.

Multi-robot problems, path planning, and batch estimation factor graphs' all make use of graph
theory.

1 Figure taken from https://gtsam.org/tutorials/intro.html.
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Introduction

The examples we will cover are
1. decentralized consensus (largely taken from [1]),

2. decentralized multi-robot formation control (largely taken from [2]).

3/31



Some initial definitions
Definition (set)
A setis an unordered list of unique mathematical objects. A set is denoted with curly {} brackets.

S=1{1,2,3} ={2,1,1,3}.

Definition (ordered pair)

An ordered pair, 2-tuple, or simply a pairis a list of mathematical objects where the order of the
objects has significance. An ordered pair or any n-tuple is denoted with circular () brackets.

P = (a,b) # (b,a).

Definition (Cartesian product)
The Cartesian product of two sets 4 x B is the set of all ordered pairs of the elements of A and B.

AxB={(a,b)|a€ A, be B}
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Some initial definitions

Notation (number of elements)
The number of elements in a set S is denoted |S]|. J
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Graphs: Definitions
Definition (Directed Graph)
A directed graph or digraph G = (V, €) @

consists of
» asetofnodes V ={1,... N} and
> asetofedgesE CV x V.
The set of edges consists of ordered pairs @2 z 3

(i,j) €€ (1) Figure 1: A simple graph with three nodes.

between some of the nodes.

> jis called the child of : . V={1,2,3},€ = {(1,2).(2.3).(3.1),3.2)}
> i is called the parent of j.

» Arrows usually point from the parent to
the child.
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Graphs: Definitions

Definition (Neighbors)
The set of out-neighbors or successors
NPut of 4 is equivalent to all of its children,
and is defined as,
N ={j eV |(i,j) € £}
_ 2 ] [ 3
The set of in-neighbors or predecessors N}
of 7 is equivalent to all of its parents, and is
defined as, M = {2}
: , . Nz = {3}
N"={jeV|(ji) €&}

y N3 ={1,2}
Henceforth, the shorthand N; will refer to
the out-neighbors.
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Graphs: Definitions
Definition (Undirected graph)

An undirected graph can be viewed as a
directed graph, where any pair of connected
nodes have an edge in both directions. That
is, if

(i,7) e € then (4,7) € &.

Definition (Subgraph)

A subgraph S = (V,, &) of G = (V, €)
consists of a subset of nodes of G, and all
edges in G connecting pairs of nodes in that
subset. That is,

Vs CV,

& ={(1,5)I(i,5) € £ and i, j € Vs}.
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Graphs: Definitions

Definition (Directed path)
A directed path of G is a sequence of the

form @
(7’3.7)3 (]7k)a CE (Eam) (2)J /
Definition (Strongly connected)
A graph is said to be strongly connected if @Z ( 3

there is a directed path from any node to
any other node.

4

A strongly connected component of G is a subgraph that is strongly connected, and the addition of

Definition (Strongly connected components)
other nodes/edges to the subgraph will break strong-connectedness. J

9/31



Weighted Graphs

> It is possible to associate weights with
the edges in a graph. That is, the
weight w;; € R>( can be associated
with the edge (i, j).

» The weights are defined such that

w”>0If(Z,])€5

and w;; = 0 otherwise.

» For unweighted graphs, one can
assume all non-zero weights are equal
to 1.
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Matrix Representations of Graphs

The adjacency matrix A is a |V| x |V| matrix

Definition (Adjacency Matrix)
with elements a;; = w;;. J

» That is,

0 wg - win

WN1 0

where w;; = 0 if there is no self-edge.
» For undirected graphs, the adjacency
matrix is symmetric.

: Adjacency Matrix
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Matrix Representations of Graphs: Incidence Matrix

Definition (Incidence Matrix)

The incidence matrixILis a |V| x |£| matrix,
where each column corresponds to an
edge. If a certain column & corresponds to
the edge (i, j) then m;, = —1, and m;;, = L.

» The column ordering is arbitrary.
» By definition, 17II = 0, where 1 is a
column of 1’s.

g

For columns correspondlng to edges
(1,2),(2,3),(3,1),(3,2) ..
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Matrix Representations of Graphs: Degree Matrix
Definition (Degree Matrix) @
The degree matrix is defined as /

D:diag(z Wik 5 - Z WNE)-
kEN; kENN 2

That is, it is a diagonal matrix containing the [
D=

sum of each node’s edges’ weights.
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Matrix Representations of Graphs

Definition (Laplacian Matrix)

The Laplacian matrix L is an |V| x |V| matrix
with elements given by [3]

0o — ZkeM Wik, lf'L:j
iy = 3.0 .-
—Wij, if i #£ j

» |t can be shown that

L=D-A. ®3)

: Laplacian Matrix

a

()

O
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Some Properties of the Laplacian Matrix

Trivial Eigenvalue

Since row sums of L are always zero, L1 = 0. It follows that A = 0 and 1 are always an eigenvalue

and eigenvector of L, respectively. This is called the trivial eigenvalue. )

Eigenvalues and Connectivity [1]

Let G be a strongly connected graph with V nodes. Then A = 0 is the single zero eigenvalue of L
(i.e., no repeated zero eigenvalues), and rank(L) = N — 1.

If G has ¢ strongly connected components, then the trivial eigenvalue will have multiplicity ¢ and
rank(L) = N —c.

Non-negative real part of eigenvalues [1]
All nontrivial eigenvalues of L have positive real parts.
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Consensus

In a team of robots or agents, consensus
refers to the robots all agreeing on a certain
quantity of interest.

Examples:

» The agents need to achieve consensus
on the room temperature, after each
taking a noisy measurement.

» Robots needing to achieve consensus
on the heading direction and velocity to =TT

travel in. Figure 2: A team of autonomous ground vehicles,

> f{ObOtS neednlng to agree on a with communication links represented as a
rendezvous” location. graph.

16/31



Consensus

> Consider N agents, each possessing some sort of consensus state variable z;.
» The task is to find some sort of consensus update law u; where
xl(t):ul, xi(O):xoi, izl,...,N,

such that consensus is achieved, meaning all z; converge to the same value,

A
T =g =...=TN = (.

» The communication links are represented by the weighted directed graph G = (V, £).

> The update law for agent ¢, u; = u;(z e, ), must strictly be a function of information from the
agent’s neighbors.
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Consensus
> In [1], the following consensus law is proposed

i’i = — Z U)”(ifz — .’Ej). (4)

JEN;

» Consider, for example, the first agent
d1=— ) wy(w —ay)
JENT

= —(wi2(z1 —22) + ... +win(z1 — zN))

1
=- [ (EjeNl wlj) “wiz ... TULN }
TN
\1:_/
= —[l11 b12 ... L1iN] X,

where /;; are the elements of the Laplacian matrix L of the graph G.

» The collective dynamics are therefore

x = —Lx. 18/31



Consensus
» Since all eigenvalues of —L are in the open left-hand plane, the system x = —Lx is stable.

» Assuming that the interaction graph is strongly connected, then the system will only have a
single non-zero equilibrium point.

> Let~y =[vy:...7n]" be a left-eigenvector of L (i.e. such that "L = 0). The term
y(t) 2 ~Tx(1) (5)
is invariant since 7(t) = —yTLx(t) = 0.

» Hence, the final value that all the states converge to can be obtained from

Jim y(t) = y(0) (6)
1o =v"xg (7)
o = ’YTXO 8)

N
Zi:1 Vi
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Consensus

In the case of an undirected graph, v =1
and N
Zi:l Lo; (9)

o= —"",

N

i.e. the agents each converge to the
average initial condition!

Average Consensus

35

$25 ¢
2/’

0 0.‘5 1‘ 1.‘5 é 25
Time (s)

Figure 3: Each agent’s individual consensus

variable over time.
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Formation control

» We seek to maintain a group of robots in a specified geometry.

» This can be convenient for coordinating groups of robots.

> Specify only the position and attitude of the group, instead of each agent.
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Formation Control

» We can stay in formation simply by
controlling the inter-robot distances. 4
» |f all inter-robot distances are constant, =l N7 g N
the formation is said to be rigid. } 3—( 7 8l
» Therefore, we must design a controller *
that will keep all these inter-robot 5 | .
distances constant. : X
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Formation Control

» Not all inter-robot distances must be
regulated, but we still require a
minimum.

» We can define an undirected graph
G = (V, ), where the nodes are the
robots, and there is an edge if the
distance between two robots is
regulated. Figure 4: Flexible (left) and rigid (right)

» Note: now that we are working with an formations.
undirected graph, if (i, j) € £ then so is

(4> 1)
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Formation control

> Let ri* denote the position of robot i, relative to some common reference point w, in some
common frame a.

> Letr=r} W' rNv]T. Define the rigidity function as the list of all squared inter-robot
distances?:
o(r)=| Ll | eRE,  (ij) €& (10)

> Approximating to first order,
¢(r+ or) =~ ¢(r) + R(r)dr (11)

where R(r) = 22 will be called the rigidity matrix.

> We want the inter-robot distances to remain constant with a small change in position ér, hence
¢(r + or) = ¢(r), leading to
R(r)ér = 0. (12)

2Only include one of either (7, j) or (j, <) in the rigidity function.
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Formation control

» For n dimensions (i.e. ri¥ € R™), the rigidity matrix will be |€] x n|V|.

> In 3D, there are 6 degrees of freedom (3 translation, 3 rotation) that the entire formation can
move, without changing inter-robot distances.

» Hence, we require that
rank(R(r)) = 3|V| — 6 (13)

for a formation to be rigid.

Definition (Minimally rigid)
A rigid graph is said to be minimally rigid if the removal of a single edge causes it to lose rigidity.

In this case, in 3D, |£| = 3|V| — 6 and R(r) will be full row rank.
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Formation control: Rigidity matrix example

(rp—ry)"T —(rp—ry)T"
(ri—ry)" —(r1—ry)T
R(r) = (rp—r3)"  —(rz—r3)"
(ro—ry)T —(rp —ry)"
(r3 —ry)T  —(r3 —ry)7
where
r; 2riv
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Formation control
> Consider the error in squared distances e(t) = (¢(r(t)) — ¢aes), as well as the Lyapunov
function candidate

> The time derivative of V' (¢) is given by

£ = oV Oedr
)= B¢ arat
= e(t)"R(r)F. (14)

> If we assume that we control robot velocities then r = u, and if we choose the control law to be
u=—R(r)"e(t) then .
V(t) = —e(t)'R(r)R(r)"e(t) <0
since R(r)R(r)T is positive semi-definite.
» If the graph is minimally rigid, then R(r)R(r)T is positive definite and e(t) — 0 as ¢t — oco.
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Formation control
» The “stacked” control law is u = —R(r)Te(t) where u = [u; ... uy]"

> Breaking this down into components we have

wi=—g S ()P - ) 2. (15)
JEN;

0 Inter-Agent Distance Errors - Magnitude of Control Efforts

40
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Just the basics! Some other terms to watch out for

> Trees, spanning trees, forests
» Cliques
» Connectivity, algebraic connectivity
Searching Algorithms (shortest path algorithms)
» Breadth-first search
» Depth-first search
> Dijkstra’s algorithms

» A* search
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Theorem (Non-negative real part of eigenvalues)
For a directed weighted graph, all eigenvalues of L. have non-negative real part.

Proof.
The proof follows directly from use of Gershgorin’s disk theorem, which states that

lz = Lall < 1

=1
i

spec(L) C U zeC
i€{1,...,n}

For the Laplacian matrix,

n

D gl = 20

j=1

J#i
since the weights are all strictly positive. Therefore, all of the Gershgorin disks contain the origin,
but are strictly in the closed right-hand plane. Therefore, all eigenvalues of L lie in the closed
right-hand plane, and thus have non-negative real component. O

4
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