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Introduction
Graph theory is ubiquitous in robotics and computer science.

Multi-robot problems, path planning, and batch estimation factor graphs1 all make use of graph
theory.

1Figure taken from https://gtsam.org/tutorials/intro.html.
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Introduction

The examples we will cover are

1. decentralized consensus (largely taken from [1]),

2. decentralized multi-robot formation control (largely taken from [2]).

3 / 31



Some initial definitions
Definition (set)
A set is an unordered list of unique mathematical objects. A set is denoted with curly {} brackets.

S = {1, 2, 3} = {2, 1, 1, 3}.

Definition (ordered pair)
An ordered pair, 2-tuple, or simply a pair is a list of mathematical objects where the order of the
objects has significance. An ordered pair or any n-tuple is denoted with circular () brackets.

P = (a, b) 6= (b, a).

Definition (Cartesian product)
The Cartesian product of two sets A× B is the set of all ordered pairs of the elements of A and B.

A× B = {(a, b) | a ∈ A, b ∈ B}
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Some initial definitions

Notation (number of elements)
The number of elements in a set S is denoted |S|.
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Graphs: Definitions

Definition (Directed Graph)
A directed graph or digraph G = (V, E)
consists of
I a set of nodes V = {1, . . . N} and
I a set of edges E ⊆ V × V .

The set of edges consists of ordered pairs

(i, j) ∈ E (1)

between some of the nodes.

I j is called the child of i .
I i is called the parent of j.
I Arrows usually point from the parent to

the child.

1

2 3

Figure 1: A simple graph with three nodes.

V = {1, 2, 3}, E = {(1, 2), (2, 3), (3, 1), (3, 2)}
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Graphs: Definitions

Definition (Neighbors)
The set of out-neighbors or successors
N out

i of i is equivalent to all of its children,
and is defined as,

N out
i = {j ∈ V | (i, j) ∈ E}.

The set of in-neighbors or predecessors N in
i

of i is equivalent to all of its parents, and is
defined as,

N in
i = {j ∈ V | (j, i) ∈ E}.

Henceforth, the shorthand Ni will refer to
the out-neighbors.

1

2 3

N1 = {2}
N2 = {3}
N3 = {1, 2}

7 / 31



Graphs: Definitions
Definition (Undirected graph)
An undirected graph can be viewed as a
directed graph, where any pair of connected
nodes have an edge in both directions. That
is, if

(i, j) ∈ E then (j, i) ∈ E .

Definition (Subgraph)
A subgraph S = (Vs, Es) of G = (V, E)
consists of a subset of nodes of G, and all
edges in G connecting pairs of nodes in that
subset. That is,

Vs ⊂ V,

Es = {(i, j)|(i, j) ∈ E and i, j ∈ Vs}.

1

2 3

1

2 3

8 / 31



Graphs: Definitions

Definition (Directed path)
A directed path of G is a sequence of the
form

(i, j), (j, k), . . . , (`,m). (2)

Definition (Strongly connected)
A graph is said to be strongly connected if
there is a directed path from any node to
any other node.

1

2 3

Definition (Strongly connected components)
A strongly connected component of G is a subgraph that is strongly connected, and the addition of
other nodes/edges to the subgraph will break strong-connectedness.
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Weighted Graphs

I It is possible to associate weights with
the edges in a graph. That is, the
weight wij ∈ R≥0 can be associated
with the edge (i, j).

I The weights are defined such that

wij > 0 if (i, j) ∈ E

and wij = 0 otherwise.

I For unweighted graphs, one can
assume all non-zero weights are equal
to 1.

1

2 3

w31 = 0:2w12 = 2:1

w23 = 0:5

w32 = 1:1
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Matrix Representations of Graphs: Adjacency Matrix

Definition (Adjacency Matrix)
The adjacency matrix A is a |V| × |V| matrix
with elements aij = wij .

I That is,

A =


0 w12 · · · w1N

w21 0
...

wN1 0

 ,
where wii = 0 if there is no self-edge.

I For undirected graphs, the adjacency
matrix is symmetric.

1

2 3

A =

 0 1 0
0 0 1
1 1 0

 .
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Matrix Representations of Graphs: Incidence Matrix

Definition (Incidence Matrix)
The incidence matrix Π is a |V| × |E| matrix,
where each column corresponds to an
edge. If a certain column k corresponds to
the edge (i, j) then πik = −1, and πjk = 1.

I The column ordering is arbitrary.
I By definition, 1TΠ = 0, where 1 is a

column of 1’s.

1 =

 1
...
1

 .

1

2 3

For columns corresponding to edges
(1, 2), (2, 3), (3, 1), (3, 2) . . .

Π =

 −1 0 1 0
1 −1 0 1
0 1 −1 −1

 .
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Matrix Representations of Graphs: Degree Matrix

Definition (Degree Matrix)
The degree matrix is defined as

D = diag(
∑
k∈N1

w1k , . . . ,
∑

k∈NN

wNk).

That is, it is a diagonal matrix containing the
sum of each node’s edges’ weights.

1

2 3

D =

 1 0 0
0 1 0
0 0 2


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Matrix Representations of Graphs: Laplacian Matrix

Definition (Laplacian Matrix)
The Laplacian matrix L is an |V| × |V| matrix
with elements given by [3]

`ij =

{∑
k∈Ni

wik, if i = j

−wij , if i 6= j
.

I It can be shown that

L = D− A. (3)

1

2 3

L =

 1 −1 0
0 1 −1
−1 −1 2


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Some Properties of the Laplacian Matrix

Trivial Eigenvalue
Since row sums of L are always zero, L1 = 0. It follows that λ = 0 and 1 are always an eigenvalue
and eigenvector of L, respectively. This is called the trivial eigenvalue.

Eigenvalues and Connectivity [1]
Let G be a strongly connected graph with N nodes. Then λ = 0 is the single zero eigenvalue of L
(i.e., no repeated zero eigenvalues), and rank(L) = N − 1.

If G has c strongly connected components, then the trivial eigenvalue will have multiplicity c and
rank(L) = N − c.

Non-negative real part of eigenvalues [1]
All nontrivial eigenvalues of L have positive real parts.
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Consensus

In a team of robots or agents, consensus
refers to the robots all agreeing on a certain
quantity of interest.

Examples:
I The agents need to achieve consensus

on the room temperature, after each
taking a noisy measurement.

I Robots needing to achieve consensus
on the heading direction and velocity to
travel in.

I Robots needing to agree on a
“rendezvous” location.

Figure 2: A team of autonomous ground vehicles,
with communication links represented as a
graph.
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Consensus

I Consider N agents, each possessing some sort of consensus state variable xi.

I The task is to find some sort of consensus update law ui where

ẋi(t) = ui, xi(0) = x0i , i = 1, . . . , N,

such that consensus is achieved, meaning all xi converge to the same value,

x1 = x2 = . . . = xN , α.

I The communication links are represented by the weighted directed graph G = (V, E).
I The update law for agent i, ui = ui(xj∈Ni

), must strictly be a function of information from the
agent’s neighbors.
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Consensus
I In [1], the following consensus law is proposed

ẋi = −
∑
j∈Ni

wij(xi − xj). (4)

I Consider, for example, the first agent

ẋ1 = −
∑
j∈N1

w1j(x1 − xj)

= − (w12(x1 − x2) + . . .+ w1N (x1 − xN ))

= −
[ (∑

j∈N1
w1j

)
−w12 . . . −w1N

] x1

...
xN


︸ ︷︷ ︸

,x

= − [`11 `12 . . . `1N ] x,

where `ij are the elements of the Laplacian matrix L of the graph G.

I The collective dynamics are therefore
ẋ = −Lx.
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Consensus
I Since all eigenvalues of −L are in the open left-hand plane, the system ẋ = −Lx is stable.

I Assuming that the interaction graph is strongly connected, then the system will only have a
single non-zero equilibrium point.

I Let γ = [γ1 . . . γN ]T be a left-eigenvector of L (i.e. such that γTL = 0). The term

y(t) , γTx(t) (5)

is invariant since ẏ(t) = −γTLx(t) = 0.

I Hence, the final value that all the states converge to can be obtained from

lim
t→∞

y(t) = y(0) (6)

γT
1α = γTx0 (7)

α =
γTx0∑N
i=1 γi

(8)
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Consensus

In the case of an undirected graph, γ = 1

and

α =

∑N
i=1 x0i
N

, (9)

i.e. the agents each converge to the
average initial condition!

0 0.5 1 1.5 2 2.5

1

1.5

2

2.5

3

3.5

4
Average Consensus

Figure 3: Each agent’s individual consensus
variable over time.
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Formation control

I We seek to maintain a group of robots in a specified geometry.

I This can be convenient for coordinating groups of robots.

I Specify only the position and attitude of the group, instead of each agent.
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Formation Control

I We can stay in formation simply by
controlling the inter-robot distances.

I If all inter-robot distances are constant,
the formation is said to be rigid.

I Therefore, we must design a controller
that will keep all these inter-robot
distances constant.
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Formation Control

I Not all inter-robot distances must be
regulated, but we still require a
minimum.

I We can define an undirected graph
G = (V, E), where the nodes are the
robots, and there is an edge if the
distance between two robots is
regulated.

I Note: now that we are working with an
undirected graph, if (i, j) ∈ E then so is
(j, i).

Figure 4: Flexible (left) and rigid (right)
formations.
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Formation control
I Let riwa denote the position of robot i, relative to some common reference point w, in some

common frame a.

I Let r = [r1w
T

a , . . . , rNw
a ]T. Define the rigidity function as the list of all squared inter-robot

distances2:

φ(r) =


...

1
2

∥∥rija
∥∥2

...

 ∈ R|E|, (i, j) ∈ E . (10)

I Approximating to first order,
φ(r + δr) ≈ φ(r) + R(r)δr (11)

where R(r) = ∂φ(r)
∂r will be called the rigidity matrix.

I We want the inter-robot distances to remain constant with a small change in position δr, hence
φ(r + δr) = φ(r), leading to

R(r)δr = 0. (12)
2Only include one of either (i, j) or (j, i) in the rigidity function.
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Formation control

I For n dimensions (i.e. riwa ∈ Rn), the rigidity matrix will be |E| × n|V|.
I In 3D, there are 6 degrees of freedom (3 translation, 3 rotation) that the entire formation can

move, without changing inter-robot distances.

I Hence, we require that
rank(R(r)) = 3|V| − 6 (13)

for a formation to be rigid.

Definition (Minimally rigid)
A rigid graph is said to be minimally rigid if the removal of a single edge causes it to lose rigidity.

In this case, in 3D, |E| = 3|V| − 6 and R(r) will be full row rank.
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Formation control: Rigidity matrix example

R(r) =


(r1 − r2)T −(r1 − r2)T
(r1 − r4)T −(r1 − r4)T

(r2 − r3)T −(r2 − r3)T
(r2 − r4)T −(r2 − r4)T

(r3 − r4)T −(r3 − r4)T


where

ri , riwa

1 2

34
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Formation control
I Consider the error in squared distances e(t) = (φ(r(t))− φdes), as well as the Lyapunov

function candidate
V (t) =

1

2
e(t)Te(t).

I The time derivative of V (t) is given by

V̇ (t) =
∂V

∂e
∂e
∂r

dr
dt

= e(t)TR(r)ṙ. (14)

I If we assume that we control robot velocities then ṙ = u, and if we choose the control law to be
u = −R(r)Te(t) then

V̇ (t) = −e(t)TR(r)R(r)Te(t) ≤ 0

since R(r)R(r)T is positive semi-definite.

I If the graph is minimally rigid, then R(r)R(r)T is positive definite and e(t)→ 0 as t→∞.
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Formation control
I The “stacked” control law is u = −R(r)Te(t) where u = [u1 . . . uN ]T

I Breaking this down into components we have

ui = −
1

2

∑
j∈Ni

(∥∥rija
∥∥2 − dij2des

)
rija . (15)
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Just the basics! Some other terms to watch out for

I Trees, spanning trees, forests

I Cliques

I Connectivity, algebraic connectivity

Searching Algorithms (shortest path algorithms)

I Breadth-first search

I Depth-first search

I Dijkstra’s algorithms

I A* search
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Theorem (Non-negative real part of eigenvalues)
For a directed weighted graph, all eigenvalues of L have non-negative real part.

Proof.
The proof follows directly from use of Gershgorin’s disk theorem, which states that

spec(L) ⊂
⋃

i∈{1,...,n}

z ∈ C
∣∣∣∣ ‖z − `ii‖ ≤ n∑

j=1
j 6=i

|`ij |

 .

For the Laplacian matrix,
n∑

j=1
j 6=i

|`ij | = `ii ≥ 0

since the weights are all strictly positive. Therefore, all of the Gershgorin disks contain the origin,
but are strictly in the closed right-hand plane. Therefore, all eigenvalues of L lie in the closed
right-hand plane, and thus have non-negative real component.
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