
Neural Networks
— The core tool of “deep learning” —

Jonathan Arsenault, Charles C. Cossette, Vassili Korotkin

McGill University, Department of Mechanical Engineering

November 7, 2022

1 / 58

Motivation

“The transition from classical computer vision techniques to the deep learning
approach was a huge bump up in performance. The results we’ve seen there

are way beyond anything we got with the classical techniques . . .

. . . where we see the most success is in applying a deep understanding of the
first principles and physics of the problem, in order to craft the learning into

exploiting the structure of the problem.”

—Adam Bry, CEO of Skydio

A leader in autonomous drones.

https://youtu.be/ncZmnfIRIWE

2 / 58

https://youtu.be/ncZmnfIRIWE

Motivation

“The transition from classical computer vision techniques to the deep learning
approach was a huge bump up in performance. The results we’ve seen there

are way beyond anything we got with the classical techniques . . .

. . . where we see the most success is in applying a deep understanding of the
first principles and physics of the problem, in order to craft the learning into

exploiting the structure of the problem.”

—Adam Bry, CEO of Skydio

A leader in autonomous drones.

https://youtu.be/ncZmnfIRIWE

2 / 58

https://youtu.be/ncZmnfIRIWE

Neural Networks in Robotics

Figure 1: Learning UWB Bias [1]

MPC Acceleration [2]:
Computation Time

MPC 6.75 ms
NN MPC 0.00584 ms

Figure 2: AI-IMU Dead reckoning [3]

Figure 3: (top) Raw image. (middle) LIDAR
depth. (bottom) Learned depth.

3 / 58

Recall Linear Regression
I Recall the problem of fitting a line to some data. For sample i, we

measure both the input x(i) and corresponding output y(i). This creates
our dataset

D = {(x(1), y(1)), . . . , (x(N), y(N))}, (1)

where x = [x1 . . . xD]T.

I We would like to fit the following simple model to this data

y = w1x1 + w2x2 + . . .+ wDxD + b = wTx + b︸ ︷︷ ︸
f(x,θ)

. (2)

I The problem is to find the parameters θ = (w, b) that “best fit” the data.

I This can be done by minimizing a loss (cost) function

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − f(x(i),θ)
∥∥∥2 , N = |D|. (3)

I For the model in (2), problem (3) is solved analytically with least squares.

4 / 58

Recall Linear Regression
I Recall the problem of fitting a line to some data. For sample i, we

measure both the input x(i) and corresponding output y(i). This creates
our dataset

D = {(x(1), y(1)), . . . , (x(N), y(N))}, (1)

where x = [x1 . . . xD]T.

I We would like to fit the following simple model to this data

y = w1x1 + w2x2 + . . .+ wDxD + b = wTx + b︸ ︷︷ ︸
f(x,θ)

. (2)

I The problem is to find the parameters θ = (w, b) that “best fit” the data.

I This can be done by minimizing a loss (cost) function

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − f(x(i),θ)
∥∥∥2 , N = |D|. (3)

I For the model in (2), problem (3) is solved analytically with least squares.

4 / 58

Recall Linear Regression
I Recall the problem of fitting a line to some data. For sample i, we

measure both the input x(i) and corresponding output y(i). This creates
our dataset

D = {(x(1), y(1)), . . . , (x(N), y(N))}, (1)

where x = [x1 . . . xD]T.

I We would like to fit the following simple model to this data

y = w1x1 + w2x2 + . . .+ wDxD + b = wTx + b︸ ︷︷ ︸
f(x,θ)

. (2)

I The problem is to find the parameters θ = (w, b) that “best fit” the data.

I This can be done by minimizing a loss (cost) function

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − f(x(i),θ)
∥∥∥2 , N = |D|. (3)

I For the model in (2), problem (3) is solved analytically with least squares.
4 / 58

Generalizing Regression

I We can take this idea of having a model, with a bunch of parameters to
optimize, but make the model nonlinear.

I As such, neural networks can accomplish exactly the same task. They
are just another (nonlinear) function

y = fNN(x,θ) (4)

which has parameters that we must optimize to accomplish a specific
task.

I Neural networks can also predict multiple outputs at once

y = fNN(x,θ). (5)

5 / 58

Regression vs Classification
Predict output variable y from input variable x.

Regression
Output y ∈ R is continuous. Example: Linear regression.

Classification
Output y belongs to one of K classes, y ∈ {y1, . . . , yK}. Example: Clustering.

Best fit

Data

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 4: Left: Linear regression illustration, Right: Clustering

6 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

A Single Neuron Example:
x1

x2

x3

∑
n w

(1)
1n xn σ(·)

w
(1)
11

w
(1)
12

w
(1)
13

h1

b
(1)
1

I Output of neuron h1 is

h1 = σ(
∑
n

w
(1)
1n xn + b

(1)
1) (6)

, σ(w(1)T

1 x + b
(1)
1). (7)

I For an entire layer,

h =

 h1

...
hM

 =


σ(w(1)T

1 x + b
(1)
1)

...
σ(w(1)T

M x + b
(1)
M)


, σ(W(1)x + b(1)) (8)

where

W(1) =


w(1)T

1

...
w(1)T

M

 , b(1) =


b
(1)
1

...
b
(1)
M


and σ(·) is just the element-wise
application of σ(·).

7 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
x1

x2

x3

∑
n w

(1)
1n xn σ(·)

w
(1)
11

w
(1)
12

w
(1)
13

h1

b
(1)
1

I Output of neuron h1 is

h1 = σ(
∑
n

w
(1)
1n xn + b

(1)
1) (6)

, σ(w(1)T

1 x + b
(1)
1). (7)

I For an entire layer,

h =

 h1

...
hM

 =


σ(w(1)T

1 x + b
(1)
1)

...
σ(w(1)T

M x + b
(1)
M)


, σ(W(1)x + b(1)) (8)

where

W(1) =


w(1)T

1

...
w(1)T

M

 , b(1) =


b
(1)
1

...
b
(1)
M


and σ(·) is just the element-wise
application of σ(·).

7 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
x1

x2

x3

∑
n w

(1)
1n xn σ(·)

w
(1)
11

w
(1)
12

w
(1)
13

h1

b
(1)
1

I Output of neuron h1 is

h1 = σ(
∑
n

w
(1)
1n xn + b

(1)
1) (6)

, σ(w(1)T

1 x + b
(1)
1). (7)

I For an entire layer,

h =

 h1

...
hM

 =


σ(w(1)T

1 x + b
(1)
1)

...
σ(w(1)T

M x + b
(1)
M)


, σ(W(1)x + b(1)) (8)

where

W(1) =


w(1)T

1

...
w(1)T

M

 , b(1) =


b
(1)
1

...
b
(1)
M


and σ(·) is just the element-wise
application of σ(·).

7 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
x1

x2

x3

∑
n w

(1)
1n xn σ(·)

w
(1)
11

w
(1)
12

w
(1)
13

h1

b
(1)
1

I Output of neuron h1 is

h1 = σ(
∑
n

w
(1)
1n xn + b

(1)
1) (6)

, σ(w(1)T

1 x + b
(1)
1). (7)

I For an entire layer,

h =

 h1

...
hM

 =


σ(w(1)T

1 x + b
(1)
1)

...
σ(w(1)T

M x + b
(1)
M)


, σ(W(1)x + b(1)) (8)

where

W(1) =


w(1)T

1

...
w(1)T

M

 , b(1) =


b
(1)
1

...
b
(1)
M


and σ(·) is just the element-wise
application of σ(·).

7 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
x1

x2

x3

∑
n w

(1)
1n xn σ(·)

w
(1)
11

w
(1)
12

w
(1)
13

h1

b
(1)
1

I Output of neuron h1 is

h1 = σ(
∑
n

w
(1)
1n xn + b

(1)
1) (6)

, σ(w(1)T

1 x + b
(1)
1). (7)

I For an entire layer,

h =

 h1

...
hM

 =


σ(w(1)T

1 x + b
(1)
1)

...
σ(w(1)T

M x + b
(1)
M)


, σ(W(1)x + b(1)) (8)

where

W(1) =


w(1)T

1

...
w(1)T

M

 , b(1) =


b
(1)
1

...
b
(1)
M


and σ(·) is just the element-wise
application of σ(·).

7 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
h1

h2

h3

∑
j w

(2)
1j hj σ(·)

w
(2)
11

w
(2)
12

w
(2)
13

y1

b
(2)
1

I Output of neuron y1 is

ŷ1 = σ

(∑
j

w
(2)
1j hj + b

(2)
1

)
(9)

, σ(w(2)T

1 h + b
(2)
1). (10)

I Output layer is computed with

ŷ = σ(W(2)h + b(2)) (11)

I Hence the full network is computed
with

ŷ = σ(W(2)σ(W(1)x+b(1))+b(2))︸ ︷︷ ︸
fNN(x,θ)

(12)
where θ is all the weights and biases.

I σ(·) is called the activation function.
An example is

σ(z) =
1

1 + e−z
. (13)

8 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
h1

h2

h3

∑
j w

(2)
1j hj σ(·)

w
(2)
11

w
(2)
12

w
(2)
13

y1

b
(2)
1

I Output of neuron y1 is

ŷ1 = σ

(∑
j

w
(2)
1j hj + b

(2)
1

)
(9)

, σ(w(2)T

1 h + b
(2)
1). (10)

I Output layer is computed with

ŷ = σ(W(2)h + b(2)) (11)

I Hence the full network is computed
with

ŷ = σ(W(2)σ(W(1)x+b(1))+b(2))︸ ︷︷ ︸
fNN(x,θ)

(12)
where θ is all the weights and biases.

I σ(·) is called the activation function.
An example is

σ(z) =
1

1 + e−z
. (13)

8 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
h1

h2

h3

∑
j w

(2)
1j hj σ(·)

w
(2)
11

w
(2)
12

w
(2)
13

y1

b
(2)
1

I Output of neuron y1 is

ŷ1 = σ

(∑
j

w
(2)
1j hj + b

(2)
1

)
(9)

, σ(w(2)T

1 h + b
(2)
1). (10)

I Output layer is computed with

ŷ = σ(W(2)h + b(2)) (11)

I Hence the full network is computed
with

ŷ = σ(W(2)σ(W(1)x+b(1))+b(2))︸ ︷︷ ︸
fNN(x,θ)

(12)
where θ is all the weights and biases.

I σ(·) is called the activation function.
An example is

σ(z) =
1

1 + e−z
. (13)

8 / 58

A Simple Neural Network

x1

x2

x3

h1

h2

h3

y1

y2

Input Layer

Hidden Layer

Output Layer

A Single Neuron Example:
h1

h2

h3

∑
j w

(2)
1j hj σ(·)

w
(2)
11

w
(2)
12

w
(2)
13

y1

b
(2)
1

I Output of neuron y1 is

ŷ1 = σ

(∑
j

w
(2)
1j hj + b

(2)
1

)
(9)

, σ(w(2)T

1 h + b
(2)
1). (10)

I Output layer is computed with

ŷ = σ(W(2)h + b(2)) (11)

I Hence the full network is computed
with

ŷ = σ(W(2)σ(W(1)x+b(1))+b(2))︸ ︷︷ ︸
fNN(x,θ)

(12)
where θ is all the weights and biases.

I σ(·) is called the activation function.
An example is

σ(z) =
1

1 + e−z
. (13)

8 / 58

Fitting a Neural Network to Data

I Regression with a neural network is then just a matter of minimizing

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − fNN(x(i),θ)
∥∥∥2 (14)

where θ = (W(1),b(1),W(2),b(2)) is all the weights and biases.

I We can use gradient descent to optimize the loss numerically

θk+1 ← θk − α∇θL(θ,D) (15)

where ∇θL(θ,D) = (∂L(θ,D)
∂θ)T and α is a step size or learning rate.

I θ can be “columnized” when necessary.

I The next challenge is to determine ∇θL(θ,D).

9 / 58

Fitting a Neural Network to Data

I Regression with a neural network is then just a matter of minimizing

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − fNN(x(i),θ)
∥∥∥2 (14)

where θ = (W(1),b(1),W(2),b(2)) is all the weights and biases.

I We can use gradient descent to optimize the loss numerically

θk+1 ← θk − α∇θL(θ,D) (15)

where ∇θL(θ,D) = (∂L(θ,D)
∂θ)T and α is a step size or learning rate.

I θ can be “columnized” when necessary.

I The next challenge is to determine ∇θL(θ,D).

9 / 58

Fitting a Neural Network to Data

I Regression with a neural network is then just a matter of minimizing

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − fNN(x(i),θ)
∥∥∥2 (14)

where θ = (W(1),b(1),W(2),b(2)) is all the weights and biases.

I We can use gradient descent to optimize the loss numerically

θk+1 ← θk − α∇θL(θ,D) (15)

where ∇θL(θ,D) = (∂L(θ,D)
∂θ)T and α is a step size or learning rate.

I θ can be “columnized” when necessary.

I The next challenge is to determine ∇θL(θ,D).

9 / 58

Computing the Gradient

I The final thing required in order to optimize is to compute ∇θL(θ,D).

I We will go layer-by-layer, starting with the output layer (the one at the
“back”), and make heavy use of the chain rule.

10 / 58

Computing the Gradient
I The loss function can be written as

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − fNN(x(i),θ)
∥∥∥2 =

1

N

N∑
i=1

Li(θ, (x(i), y(i))), (16)

where the loss for one data point is

Li

(
θ, (x(i), y(i))

)
=

1

2

∥∥∥y(i) − fNN(x(i),θ)
∥∥∥2 . (17)

I It will also be useful to let ŷ(i) = fNN(x(i),θ) and to rewrite the norm as a
sum,

Li

(
θ, (x(i), y(i))

)
=

1

2

∥∥∥y(i) − ŷ(i)
∥∥∥2 , (18)

=
1

2

∑
k

(
y
(i)
k − ŷ

(i)
k

)2
. (19)

11 / 58

Computing the Gradient
I The loss function can be written as

L(θ,D) =
1

2N

N∑
i=1

∥∥∥y(i) − fNN(x(i),θ)
∥∥∥2 =

1

N

N∑
i=1

Li(θ, (x(i), y(i))), (16)

where the loss for one data point is

Li

(
θ, (x(i), y(i))

)
=

1

2

∥∥∥y(i) − fNN(x(i),θ)
∥∥∥2 . (17)

I It will also be useful to let ŷ(i) = fNN(x(i),θ) and to rewrite the norm as a
sum,

Li

(
θ, (x(i), y(i))

)
=

1

2

∥∥∥y(i) − ŷ(i)
∥∥∥2 , (18)

=
1

2

∑
k

(
y
(i)
k − ŷ

(i)
k

)2
. (19)

11 / 58

Computing the Gradient

I The goal is to compute ∂Li

∂θ , which means computing ∂Li

∂W(1) , ∂Li

∂b(1) , ∂Li

∂W(2) ,
and ∂Li

∂b(2) .

I In this particular derivation, we will compute the derivatives element-wise.

Parameter Derivative

w
(1)
jn

b
(1)
j

w
(2)
kj

b
(2)
k

12 / 58

Computing the Gradient
I We will compute the gradients element-wise to simplify the notation,

beginning with w(2)
kj . Using the chain rule,

∂Li

∂w
(2)
kj

=
∂Li

∂ŷk

∂ŷk

∂w
(2)
kj

. (20)

I Recalling that ŷk = σ
(∑

j w
(2)
kj hj + b

(2)
k

)
, let

ak =
∑
j

w
(2)
kj hj + b

(2)
k (21)

be an activation.

I The chain rule can then be applied again to yield

∂Li

∂w
(2)
kj

=
∂Li

∂ŷk

∂ŷk
∂ak

∂ak

∂w
(2)
kj

. (22)

13 / 58

Computing the Gradient
I We will compute the gradients element-wise to simplify the notation,

beginning with w(2)
kj . Using the chain rule,

∂Li

∂w
(2)
kj

=
∂Li

∂ŷk

∂ŷk

∂w
(2)
kj

. (20)

I Recalling that ŷk = σ
(∑

j w
(2)
kj hj + b

(2)
k

)
, let

ak =
∑
j

w
(2)
kj hj + b

(2)
k (21)

be an activation.

I The chain rule can then be applied again to yield

∂Li

∂w
(2)
kj

=
∂Li

∂ŷk

∂ŷk
∂ak

∂ak

∂w
(2)
kj

. (22)

13 / 58

Computing the Gradient
I We will compute the gradients element-wise to simplify the notation,

beginning with w(2)
kj . Using the chain rule,

∂Li

∂w
(2)
kj

=
∂Li

∂ŷk

∂ŷk

∂w
(2)
kj

. (20)

I Recalling that ŷk = σ
(∑

j w
(2)
kj hj + b

(2)
k

)
, let

ak =
∑
j

w
(2)
kj hj + b

(2)
k (21)

be an activation.

I The chain rule can then be applied again to yield

∂Li

∂w
(2)
kj

=
∂Li

∂ŷk

∂ŷk
∂ak

∂ak

∂w
(2)
kj

. (22)

13 / 58

Computing the Gradient
I Compute each partial derivative in

∂Li

∂w
(2)
kj

=
∂Li

∂ŷk

∂ŷk
∂ak

∂ak

∂w
(2)
kj

. (23)

Equation Derivative

Li = 1
2

∑
k (yk − ŷk)

2 ∂Li

∂ŷk
= ŷk − yk

ŷk = σ(ak) ∂ŷk

∂ak
= σ′(ak)

ak =
∑

j w
(2)
kj hj + b

(2)
k

∂ak

∂w
(2)
kj

= hj

I Therefore,
∂Li

∂w
(2)
kj

= (ŷk − yk)σ′(ak)hj . (24)

14 / 58

Computing the Gradient

I At this stage, it is useful to introduce

δk =
∂Li

∂ak
= (ŷk − yk)σ′(ak). (25)

which leads to
∂Li

∂w
(2)
kj

= δkhj . (26)

15 / 58

Computing the Gradient

Parameter Derivative

w
(1)
jn

b
(1)
j

w
(2)
kj

∂Li

∂w
(2)
kj

= δkhj

b
(2)
k

16 / 58

Computing the Gradient

I To compute ∂Li

∂b
(2)
k

, the chain rule is applied once again to obtain

∂Li

∂b
(2)
k

=
∂Li

∂ŷk

∂ŷk
∂ak

∂ak

∂b
(2)
k

. (27)

I Given that

∂ak

∂b
(2)
k

=
∂
(∑

j w
(2)
kj hj + b

(2)
k

)
∂b

(2)
k

= 1, (28)

it follows that
∂Li

∂b
(2)
k

= δk. (29)

17 / 58

Computing the Gradient

I To compute ∂Li

∂b
(2)
k

, the chain rule is applied once again to obtain

∂Li

∂b
(2)
k

=
∂Li

∂ŷk

∂ŷk
∂ak

∂ak

∂b
(2)
k

. (27)

I Given that

∂ak

∂b
(2)
k

=
∂
(∑

j w
(2)
kj hj + b

(2)
k

)
∂b

(2)
k

= 1, (28)

it follows that
∂Li

∂b
(2)
k

= δk. (29)

17 / 58

Computing the Gradient

Parameter Derivative

w
(1)
jn

b
(1)
j

w
(2)
kj

∂Li

∂w
(2)
kj

= δkhj

b
(2)
k

∂Li

∂b
(2)
k

= δk

18 / 58

Computing the Gradient

I Next up is ∂Li

∂w
(1)
jn

, for which the chain rule is used to get

∂Li

∂w
(1)
jn

=
∑
k

∂Li

∂ŷk

∂ŷk
∂ak

∂ak
∂hj

∂hj

∂w
(1)
jn

. (30)

I Recalling that hj = σ
(∑

n w
(1)
jn xn + b

(1)
j

)
, let

aj =
∑
n

w
(1)
jn xn + b

(1)
j . (31)

I Once again, the chain rule is used to get

∂Li

∂w
(1)
jn

=
∑
k

∂Li

∂ŷk

∂ŷk
∂ak

∂ak
∂hj

∂hj
∂aj

∂aj

∂w
(1)
jn

. (32)

19 / 58

Computing the Gradient

I Next up is ∂Li

∂w
(1)
jn

, for which the chain rule is used to get

∂Li

∂w
(1)
jn

=
∑
k

∂Li

∂ŷk

∂ŷk
∂ak

∂ak
∂hj

∂hj

∂w
(1)
jn

. (30)

I Recalling that hj = σ
(∑

n w
(1)
jn xn + b

(1)
j

)
, let

aj =
∑
n

w
(1)
jn xn + b

(1)
j . (31)

I Once again, the chain rule is used to get

∂Li

∂w
(1)
jn

=
∑
k

∂Li

∂ŷk

∂ŷk
∂ak

∂ak
∂hj

∂hj
∂aj

∂aj

∂w
(1)
jn

. (32)

19 / 58

Computing the Gradient

I Next up is ∂Li

∂w
(1)
jn

, for which the chain rule is used to get

∂Li

∂w
(1)
jn

=
∑
k

∂Li

∂ŷk

∂ŷk
∂ak

∂ak
∂hj

∂hj

∂w
(1)
jn

. (30)

I Recalling that hj = σ
(∑

n w
(1)
jn xn + b

(1)
j

)
, let

aj =
∑
n

w
(1)
jn xn + b

(1)
j . (31)

I Once again, the chain rule is used to get

∂Li

∂w
(1)
jn

=
∑
k

∂Li

∂ŷk

∂ŷk
∂ak

∂ak
∂hj

∂hj
∂aj

∂aj

∂w
(1)
jn

. (32)

19 / 58

Computing the Gradient
I The missing terms in

∂Li

∂w
(1)
jn

=
∑
k

∂Li

∂ŷk

∂ŷk
∂ak

∂ak
∂hj

∂hj
∂aj

∂aj

∂w
(1)
jn

(33)

can then be computed.

Equation Derivative

ak =
∑

j w
(2)
kj hj + b

(2)
k

∂ak

∂hj
= w

(2)
kj

hj = σ(aj)
∂hj

∂aj
= σ′(aj)

aj =
∑

n w
(1)
jn xn + b

(1)
j

∂aj

∂w
(1)
jn

= xn

I Therefore,
∂Li

∂w
(1)
jn

=
∑
k

δkw
(2)
kj σ

′(aj)xn. (34)

20 / 58

Computing the Gradient

I It is again useful to introduce

δj =
∂Li

∂aj
= σ′(aj)

∑
k

δkw
(2)
kj . (35)

I This simplifies the gradient to

∂Li

∂w
(1)
jn

= δjxn. (36)

21 / 58

Computing the Gradient

I It is again useful to introduce

δj =
∂Li

∂aj
= σ′(aj)

∑
k

δkw
(2)
kj . (35)

I This simplifies the gradient to

∂Li

∂w
(1)
jn

= δjxn. (36)

21 / 58

Computing the Gradient

Parameter Derivative

w
(1)
jn

∂Li

∂w
(1)
jn

= δjxn

b
(1)
j

w
(2)
kj

∂Li

∂w
(2)
kj

= δkhj

b
(2)
k

∂Li

∂b
(2)
k

= δk

22 / 58

Computing the Gradient

I The final derivative to compute is

∂Li

∂b
(1)
j

=
∂Li

∂aj

∂aj

∂b
(1)
j

. (37)

I As

∂aj

∂b
(1)
j

=
∂
(∑

n w
(1)
jn xn + b

(1)
j

)
∂b

(1)
j

= 1, (38)

the final equation is
∂Li

∂b
(1)
j

= δj , (39)

23 / 58

Computing the Gradient

I The final derivative to compute is

∂Li

∂b
(1)
j

=
∂Li

∂aj

∂aj

∂b
(1)
j

. (37)

I As

∂aj

∂b
(1)
j

=
∂
(∑

n w
(1)
jn xn + b

(1)
j

)
∂b

(1)
j

= 1, (38)

the final equation is
∂Li

∂b
(1)
j

= δj , (39)

23 / 58

Computing the Gradient

Parameter Derivative

w
(1)
jn

∂Li

∂w
(1)
jn

= δjxn

b
(1)
j

∂Li

∂b
(1)
j

= δj

w
(2)
kj

∂Li

∂w
(2)
kj

= δkhj

b
(2)
k

∂Li

∂b
(2)
k

= δk

Figure 5: Data (blue) and NN prediction (red) [1]

24 / 58

“Forward” vs. “Reverse” Mode Differentiation

I What we just did is called backpropagation. But why?

I Consider a composition of functions which we want to differentiate with
respect to its input x,

f(x) = f(3) (f(2)(f(1)(x))︸ ︷︷ ︸
h1

)

︸ ︷︷ ︸
h2

(40)

where f(x) ∈ RD, x ∈ Rd, f(3)(h2) ∈ RD, f(2)(h1) ∈ Rd2 , f(1)(x) ∈ Rd1 .

I How do we compute ∂f
∂x efficiently if we know ∂f(3)

∂h2
, ∂f(2)

∂h1
, ∂f(1)

∂x ?

25 / 58

“Forward” vs. “Reverse” Mode Differentiation

Given

f(x) = f(3) (f(2)(f(1)(x))︸ ︷︷ ︸
h1

)

︸ ︷︷ ︸
h2

(41)

The Jacobian ∂f
∂x is given by

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.︸ ︷︷ ︸

Rd1×d

. (42)

How do we compute ∂f
∂x efficiently?

The order of matrix multiplications matters.

26 / 58

“Forward” vs. “Reverse” Mode Differentiation

Given

f(x) = f(3) (f(2)(f(1)(x))︸ ︷︷ ︸
h1

)

︸ ︷︷ ︸
h2

(41)

The Jacobian ∂f
∂x is given by

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.︸ ︷︷ ︸

Rd1×d

. (42)

How do we compute ∂f
∂x efficiently?

The order of matrix multiplications matters.

26 / 58

“Forward” vs. “Reverse” Mode Differentiation

Given

f(x) = f(3) (f(2)(f(1)(x))︸ ︷︷ ︸
h1

)

︸ ︷︷ ︸
h2

(41)

The Jacobian ∂f
∂x is given by

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.︸ ︷︷ ︸

Rd1×d

. (42)

How do we compute ∂f
∂x efficiently?

The order of matrix multiplications matters.

26 / 58

“Forward” vs. “Reverse” Mode Differentiation
I Given

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.,︸ ︷︷ ︸

Rd1×d

. (43)

I Forward mode would compute

∂f
∂x

=
∂f(3)

∂h2

(
∂f(2)

∂h1

∂f(1)

∂x

)
︸ ︷︷ ︸
←−−−−−−−−−−1

(44)

Cost: Dd2d+ (d2d1d) = d(Dd2 + d2d1)

I Reverse/backward mode would compute

∂f
∂x

=

(
∂f(3)

∂h2

∂f(2)

∂h1

)
∂f(1)

∂x︸ ︷︷ ︸
−−−−−−−−−−→

. (45)

Cost: (Dd2d1) +Dd1d = D(d2d1 + d1d). For D << d, as with neural nets
where the loss L(x|θ) ∈ R, backward mode is significantly faster.

1 f(1) is the first function applied. So the left direction is indeed the forward one. 27 / 58

“Forward” vs. “Reverse” Mode Differentiation
I Given

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.,︸ ︷︷ ︸

Rd1×d

. (43)

I Forward mode would compute

∂f
∂x

=
∂f(3)

∂h2

(
∂f(2)

∂h1

∂f(1)

∂x

)
︸ ︷︷ ︸
←−−−−−−−−−−1

(44)

Cost: Dd2d+ (d2d1d) = d(Dd2 + d2d1)

I Reverse/backward mode would compute

∂f
∂x

=

(
∂f(3)

∂h2

∂f(2)

∂h1

)
∂f(1)

∂x︸ ︷︷ ︸
−−−−−−−−−−→

. (45)

Cost: (Dd2d1) +Dd1d = D(d2d1 + d1d). For D << d, as with neural nets
where the loss L(x|θ) ∈ R, backward mode is significantly faster.

1 f(1) is the first function applied. So the left direction is indeed the forward one. 27 / 58

“Forward” vs. “Reverse” Mode Differentiation
I Given

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.,︸ ︷︷ ︸

Rd1×d

. (43)

I Forward mode would compute

∂f
∂x

=
∂f(3)

∂h2

(
∂f(2)

∂h1

∂f(1)

∂x

)
︸ ︷︷ ︸
←−−−−−−−−−−1

(44)

Cost: Dd2d+ (d2d1d) = d(Dd2 + d2d1)

I Reverse/backward mode would compute

∂f
∂x

=

(
∂f(3)

∂h2

∂f(2)

∂h1

)
∂f(1)

∂x︸ ︷︷ ︸
−−−−−−−−−−→

. (45)

Cost: (Dd2d1) +Dd1d = D(d2d1 + d1d). For D << d, as with neural nets
where the loss L(x|θ) ∈ R, backward mode is significantly faster.

1 f(1) is the first function applied. So the left direction is indeed the forward one. 27 / 58

“Forward” vs. “Reverse” Mode Differentiation
I Given

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.,︸ ︷︷ ︸

Rd1×d

. (43)

I Forward mode would compute

∂f
∂x

=
∂f(3)

∂h2

(
∂f(2)

∂h1

∂f(1)

∂x

)
︸ ︷︷ ︸
←−−−−−−−−−−1

(44)

Cost: Dd2d+ (d2d1d) = d(Dd2 + d2d1)

I Reverse/backward mode would compute

∂f
∂x

=

(
∂f(3)

∂h2

∂f(2)

∂h1

)
∂f(1)

∂x︸ ︷︷ ︸
−−−−−−−−−−→

. (45)

Cost: (Dd2d1) +Dd1d = D(d2d1 + d1d).

For D << d, as with neural nets
where the loss L(x|θ) ∈ R, backward mode is significantly faster.

1 f(1) is the first function applied. So the left direction is indeed the forward one. 27 / 58

“Forward” vs. “Reverse” Mode Differentiation
I Given

∂f
∂x

=
∂f(3)

∂h2︸ ︷︷ ︸
RD×d2

∂f(2)

∂h1︸ ︷︷ ︸
Rd2×d1

∂f(1)

∂x
.,︸ ︷︷ ︸

Rd1×d

. (43)

I Forward mode would compute

∂f
∂x

=
∂f(3)

∂h2

(
∂f(2)

∂h1

∂f(1)

∂x

)
︸ ︷︷ ︸
←−−−−−−−−−−1

(44)

Cost: Dd2d+ (d2d1d) = d(Dd2 + d2d1)

I Reverse/backward mode would compute

∂f
∂x

=

(
∂f(3)

∂h2

∂f(2)

∂h1

)
∂f(1)

∂x︸ ︷︷ ︸
−−−−−−−−−−→

. (45)

Cost: (Dd2d1) +Dd1d = D(d2d1 + d1d). For D << d, as with neural nets
where the loss L(x|θ) ∈ R, backward mode is significantly faster.

1 f(1) is the first function applied. So the left direction is indeed the forward one. 27 / 58

Neural Networks in Practice

If only it were that easy.

Problem Solution

Gradients get very
complicated

I Computational graphs
I Automatic differentiation

Overfitting
I Regularization
I Dropout

Lots of data makes
training slow

I Stochastic gradient descent
I Many other tricks

28 / 58

Automatic Differentiation

I The analytical derivation of backpropagation presented earlier is useful to
understand the concept, but is not particularly useful when implementing
neural networks.

I There is a need for a method of doing backpropagation without having to
analytically compute the derivatives for each loss function, activation
function, choice of architecture, etc..

I Automatic differentiation provides a framework for doing just that.

29 / 58

Automatic Differentiation

I Recall the equation for the partial derivative of the loss with respect to the
second layer weights,

∂Li

∂w
(2)
jk

=
∂Li

∂ŷk

∂ŷk
∂ak

∂ak

∂w
(2)
jk

. (46)

I As an example, we will compute ∂Li

∂ŷk
using autodiff.

I To simplify the example even further, we will assume that there is a single
output, meaning

Li =
1

2
(y − ŷ)2. (47)

30 / 58

Automatic Differentiation

y

ŷ

− v1 (·)2 v2 × 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.

I v1 = y − ŷ.
I v2 = v21 .
I L = 1

2v2.
Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,
I ∂v2

∂v1
= 2v1,

I ∂v1
∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Automatic Differentiation

y

ŷ

− v1

(·)2 v2 × 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.
I v1 = y − ŷ.

I v2 = v21 .
I L = 1

2v2.
Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,
I ∂v2

∂v1
= 2v1,

I ∂v1
∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Automatic Differentiation

y

ŷ

− v1 (·)2 v2

× 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.
I v1 = y − ŷ.
I v2 = v21 .

I L = 1
2v2.

Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,
I ∂v2

∂v1
= 2v1,

I ∂v1
∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Automatic Differentiation

y

ŷ

− v1 (·)2 v2 × 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.
I v1 = y − ŷ.
I v2 = v21 .
I L = 1

2v2.

Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,
I ∂v2

∂v1
= 2v1,

I ∂v1
∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Automatic Differentiation

y

ŷ

− v1 (·)2 v2 × 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.
I v1 = y − ŷ.
I v2 = v21 .
I L = 1

2v2.
Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,

I ∂v2
∂v1

= 2v1,
I ∂v1

∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Automatic Differentiation

y

ŷ

− v1 (·)2 v2 × 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.
I v1 = y − ŷ.
I v2 = v21 .
I L = 1

2v2.
Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,
I ∂v2

∂v1
= 2v1,

I ∂v1
∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Automatic Differentiation

y

ŷ

− v1 (·)2 v2 × 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.
I v1 = y − ŷ.
I v2 = v21 .
I L = 1

2v2.
Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,
I ∂v2

∂v1
= 2v1,

I ∂v1
∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Automatic Differentiation

y

ŷ

− v1 (·)2 v2 × 1
2 L

∂L
∂v2

∂v2

∂v1

∂v1

∂ŷ

Build the computational
graph by decomposing the
equation into elementary
operations.
I v1 = y − ŷ.
I v2 = v21 .
I L = 1

2v2.
Move backwards through
the graph, computing
derivatives.
I ∂L

∂v2
= 1

2 ,
I ∂v2

∂v1
= 2v1,

I ∂v1
∂ŷ = −1.

I The final equation is found by multiplying,

∂L

∂ŷ
=
∂L

∂v2

∂v2
∂v1

∂v1
∂ŷ

= 1
2 × 2v1 ×−1 = −v1. (48)

31 / 58

Overfitting

I Increasing the complexity of our model makes it more accurate... right?

I Well.. sort of.

Figure 6: Fitting polynomials of various orders to a 2D dataset. Taken from
https://cs.mcgill.ca/˜wlh/comp451/files/comp451_chap10.pdf

32 / 58

https://cs.mcgill.ca/~wlh/comp451/files/comp451_chap10.pdf

Overfitting

I Increasing the complexity of our model makes it more accurate... right?

I Well.. sort of.

Figure 6: Fitting polynomials of various orders to a 2D dataset. Taken from
https://cs.mcgill.ca/˜wlh/comp451/files/comp451_chap10.pdf

32 / 58

https://cs.mcgill.ca/~wlh/comp451/files/comp451_chap10.pdf

Regularization
I Model needs to generalize well.

I Regularization penalizes complexity in the model.

L2 (Tikhonov) regularization
Penalize squared norm of model parameters.

Lreg(θ,D) = L(θ,D) + λ

nparam∑
i=1

θ2i (49)

L1 (Lasso) regularization
Penalize L1 norm of model parameters.

Lreg(θ,D) = L(θ,D) + λ

nparam∑
i=1

|θi| (50)

I L2 regression tends to give parameters with smaller values so that small
change in input gives small change in output. L1 tends to drive some
parameters to zero, getting rid of useless connections.

33 / 58

Regularization
I Model needs to generalize well.

I Regularization penalizes complexity in the model.

L2 (Tikhonov) regularization
Penalize squared norm of model parameters.

Lreg(θ,D) = L(θ,D) + λ

nparam∑
i=1

θ2i (49)

L1 (Lasso) regularization
Penalize L1 norm of model parameters.

Lreg(θ,D) = L(θ,D) + λ

nparam∑
i=1

|θi| (50)

I L2 regression tends to give parameters with smaller values so that small
change in input gives small change in output. L1 tends to drive some
parameters to zero, getting rid of useless connections.

33 / 58

Regularization
I Model needs to generalize well.

I Regularization penalizes complexity in the model.

L2 (Tikhonov) regularization
Penalize squared norm of model parameters.

Lreg(θ,D) = L(θ,D) + λ

nparam∑
i=1

θ2i (49)

L1 (Lasso) regularization
Penalize L1 norm of model parameters.

Lreg(θ,D) = L(θ,D) + λ

nparam∑
i=1

|θi| (50)

I L2 regression tends to give parameters with smaller values so that small
change in input gives small change in output. L1 tends to drive some
parameters to zero, getting rid of useless connections.

33 / 58

Activation functions

I The sigmoid activation function σ(x) = 1
1+e−x is not the only choice.

I Logistic and tanh functions saturate at high and low values which can
make gradient-based training difficult. [p. 195][4]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

σ
(x
)

ReLU

Logistic

tanh

Figure 7: Examples of activation functions

Sigmoid:

σ(x) =
1

1 + e−x
(51)

tanh:

σ(x) = tanh(x) (52)

Rectified Linear Unit (ReLU):

σ(x) =

{
x if x > 0

0 otherwise
(53)

34 / 58

Maximum Likelihood
Recall that for linear regression, the error is given by the mean squared error,

θ∗ = arg min
θ

N∑
i=1

(y(i) − fNN(x(i),θ))2. (54)

But, if fNN(x(i),θ) ∈ [0, 1] estimates a probability for classification, a common
approach is maximum likelihood estimation. For binary classification,

θ∗ = arg max
θ

p(y(1), . . . , y(N)|x(1), . . . , x(N),θ) (55)

= arg max
θ

N∏
i=1

p(yi|fNN(x(i),θ)) (56)

= arg max
θ

N∏
i=1

fNN(x(i),θ)y
(i)

(1− fNN(x(i),θ))1−y
(i)

. (57)

Eq. (57) makes sense if you consider edge cases. For example, given a point
x(1) with y(1) = 1 but the model predicts f(x(1)|θ) = 0.1. Then likelihood of
x(1), y(1) is p(y(1)|f(x(1),θ)) = 0.11(1− 0.1)0 = 0.1.

35 / 58

Stochastic Gradient Descent

Gradient Descent
The parameters are updated using

θk+1 ← θk − α∇θL(θ,D). (58)

I Stable, but slow.

Stochastic Gradient Descent
The parameters are updated using

θk+1 ← θk − α∇θL(θ, (x(i), y(i))), i = 1, . . . , N︸ ︷︷ ︸
an epoch

. (59)

I Fast, but unstable.

36 / 58

Stochastic Gradient Descent

Gradient Descent
The parameters are updated using

θk+1 ← θk − α∇θL(θ,D). (58)

I Stable, but slow.

Stochastic Gradient Descent
The parameters are updated using

θk+1 ← θk − α∇θL(θ, (x(i), y(i))), i = 1, . . . , N︸ ︷︷ ︸
an epoch

. (59)

I Fast, but unstable.

36 / 58

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent
The parameters are updated using

θk+1 ← θk − α∇θL(θ,B(i)), i = 1, . . . ,M︸ ︷︷ ︸
an epoch

, (60)

where the dataset D is partitioned into M mini-batches, D = {B(1), . . . ,BM},
with each mini batch containing K data samples (x, y).

37 / 58

Stochastic Gradient Descent

To obtain good convergence, several parameters require tuning.

I Batch Size: Trade-off between speed and stability.

I Learning Rate: Trade-off between speed and stability.

I Number of Epochs: Training for too long may result in overfitting (early
stopping).

38 / 58

Extensions and Variations of SGD

I Learning rate scheduling: lowering the learning rate as the algorithm
approaches the solution.

I Momentum: Update is a linear combination of the gradient and the
previous update,

θk+1 ← θk − α∇θL(θ,D) + η∆θ, (61)

where ∆θ = θk − θk−1. Reduces oscillations, biases algorithm to keep
moving in the same direction.

I Adaptive learning rates: Automatically adjust learning rate for each
parameter through training.

39 / 58

MNIST Case Study
I MNIST (Modified National Institute of Standards and Technology

database)2contains handwritten digits, 28 × 28 pixels, 60 000 training
examples and 10 000 testing examples.

I Classic “easy” benchmark dataset where we want to recognize the digit
on the image.

Figure 8: Examples of handwritten digits from the MNIST dataset3

1http://yann.lecun.com/exdb/mnist/
2https://en.wikipedia.org/wiki/MNIST_database

40 / 58

http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/MNIST_database

MNIST Case Study

I By “flattening” the input from a 28 × 28 matrix to a 784 × 1 matrix, a
simple neural network can be used to classify the images.

I We will train a network with a single hidden layer with 128 nodes.

I The hidden layer uses a ReLU activation function, while the output layer
uses a softmax activation function.

I Mini-batch SGD with adaptive learning rates is used to train the model.

I The effect of the learning rate, batch size and number of epochs is
investigated.

41 / 58

MNIST Case Study: Learning Rate

I Small learning rate: Slow convergence.

I Large learning rate: Unstable training.

0 5 10 15 20 25
Epoch

2.15

2.20

2.25

2.30

2.35

2.40

Lo
ss

Learning Rate: 1e-06
Training
Testing

0 5 10 15 20 25
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Learning Rate: 0.0001
Training
Testing

0 5 10 15 20 25
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Learning Rate: 0.01
Training
Testing

Figure 9: Effect of learning rate on neural network training, training for 30 epochs with
a batch size of 64.

42 / 58

MNIST Case Study: Batch Size

I Small batch size: Unstable training and overfitting.

I Large batch size: Slow convergence.

0 5 10 15 20 25
Epoch

0.0

0.2

0.4

0.6

0.8

Lo
ss

Batch Size: 1
Training
Testing

0 5 10 15 20 25
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Batch Size: 64
Training
Testing

0 5 10 15 20 25
Epoch

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Batch Size: 256
Training
Testing

Figure 10: Effect of batch size on neural network training, training for 30 epochs with a
learning rate of 10−4.

43 / 58

MNIST Case Study: Number of Epochs
I Too few epochs: Model is underfit and performance could still be

improved.

I Too many epochs: Model is overfit..

0 5
Epoch

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Number of Epochs: 10
Training
Testing

0 5 10 15 20 25
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Number of Epochs: 30
Training
Testing

0 5 101520253035404550556065707580859095
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Number of Epochs: 100
Training
Testing

Figure 11: Effect of batch size on neural network training, training with a batch size of
64 with a learning rate of 10−4.

44 / 58

MNIST Case Study

I Using the parameters which yielded the best results, an accuracy of
91.8%.

I Best practice would be to perform a grid search with cross-validation.

45 / 58

Convolutional Neural Network
In the MNIST neural network example, the image was flattened to a 1D
column matrix and fed into the feedforward network. Problems with this:

1. Number of parameters blows up quickly for high resolution images.

2. Lose spatial information.

A convolutional network addresses these problems.

36 x 1 \columnized" image

n x 1 hidden layer

6 x 6 image

n x n \image"

Figure 12: (left) “Plain vanilla” layer. (right) Convolutional layer.
46 / 58

A Single Convolutional Layer

6 x 6 image

z11

z12 z13 z14 z15

z21

5 x 5 “image”

w11 w12

w21 w22

2 x 2 “filter”

Figure 13: CNN Diagram.

zij =
∑
m

∑
n

wmnxi+m,j+n (62)

47 / 58

A Single Convolutional Layer

6 x 6 image

z11 z12

z13 z14 z15

z21

5 x 5 “image”

w11 w12

w21 w22

2 x 2 “filter”

Figure 13: CNN Diagram.

zij =
∑
m

∑
n

wmnxi+m,j+n (62)

47 / 58

A Single Convolutional Layer

6 x 6 image

z11 z12 z13

z14 z15

z21

5 x 5 “image”

w11 w12

w21 w22

2 x 2 “filter”

Figure 13: CNN Diagram.

zij =
∑
m

∑
n

wmnxi+m,j+n (62)

47 / 58

A Single Convolutional Layer

6 x 6 image

z11 z12 z13 z14

z15

z21

5 x 5 “image”

w11 w12

w21 w22

2 x 2 “filter”

Figure 13: CNN Diagram.

zij =
∑
m

∑
n

wmnxi+m,j+n (62)

47 / 58

A Single Convolutional Layer

6 x 6 image

z11 z12 z13 z14 z15

z21

5 x 5 “image”

w11 w12

w21 w22

2 x 2 “filter”

Figure 13: CNN Diagram.

zij =
∑
m

∑
n

wmnxi+m,j+n (62)

47 / 58

A Single Convolutional Layer

6 x 6 image

z11 z12 z13 z14 z15

z21

5 x 5 “image”

w11 w12

w21 w22

2 x 2 “filter”

Figure 13: CNN Diagram.

zij =
∑
m

∑
n

wmnxi+m,j+n (62)

47 / 58

A Single Convolutional Layer

6 x 6 image

z11 z12 z13 z14 z15

z21

5 x 5 “image”

w11 w12

w21 w22

2 x 2 “filter”

Figure 13: CNN Diagram.

zij =
∑
m

∑
n

wmnxi+m,j+n (62)

47 / 58

Typical CNN Setup

| {z }

Fully connected

| {z }

Convolutional

Figure 14: Typical CNN setup, consisting of convolutional layers followed by
fully-connected layers.

48 / 58

MNIST Case Study Revisited

I A CNN can also be used to perform handwritten digit recognition.

I The chosen architecture uses 16 3 × 3 filters and a single fully connected
layer with 20 nodes.

I The fully connected network from earlier had 101770 parameters, while
this CNN has 54470 parameters.

49 / 58

MNIST Case Study Revisited

I The CNN achieves an accuracy of 94.0% compared to 91.8% for the NN.

0 5 10 15 20 25
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

NN
Training
Testing

0 5 10 15 20 25
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

CNN
Training
Testing

Figure 15: Learning curves for simple neural network (NN) and CNNs.

50 / 58

Recurrent Neural Networks

I A feedforward neural network is well suited for tasks where the inputs are
of fixed lengths and are unordered.

I What if the problem involves inputs of variable lengths in which the order
matters. For example, machine translation.

I A recurrent neural network (RNN) is ideally suited for this problem as it
shares weights between inputs.

51 / 58

Recurrent Neural Networks

I A feedforward neural network is well suited for tasks where the inputs are
of fixed lengths and are unordered.

I What if the problem involves inputs of variable lengths in which the order
matters. For example, machine translation.

I A recurrent neural network (RNN) is ideally suited for this problem as it
shares weights between inputs.

51 / 58

Recurrent Neural Networks

I A feedforward neural network is well suited for tasks where the inputs are
of fixed lengths and are unordered.

I What if the problem involves inputs of variable lengths in which the order
matters. For example, machine translation.

I A recurrent neural network (RNN) is ideally suited for this problem as it
shares weights between inputs.

51 / 58

Recurrent Neural Networks

y(t)

h(t)

x(t)

y(t+1)

h(t+1)

x(t+1)

y(t−1)

h(t−1)

x(t−1)

h(...)h(...)

Whx

Wyh

Whh

Whx

Wyh

Whx

Whh

Wyh

Whh Whh

Figure 16: RNN Diagram

52 / 58

Recurrent Neural Networks

y(t)

h(t)

x(t)

y(t+1)

h(t+1)

x(t+1)

y(t−1)

h(t−1)

x(t−1)

h(...)h(...)

Whx

Wyh

Whh

Whx

Wyh

Whx

Whh

Wyh

Whh Whh

Figure 16: RNN Diagram

52 / 58

Recurrent Neural Networks

y(t)

h(t)

x(t)

y(t+1)

h(t+1)

x(t+1)

y(t−1)

h(t−1)

x(t−1)

h(...)h(...)

Whx

Wyh

Whh

Whx

Wyh

Whx

Whh

Wyh

Whh Whh

Figure 16: RNN Diagram

52 / 58

Recurrent Neural Networks

y(t)

h(t)

x(t)

y(t+1)

h(t+1)

x(t+1)

y(t−1)

h(t−1)

x(t−1)

h(...)h(...)

Whx

Wyh

Whh

Whx

Wyh

Whx

Whh

Wyh

Whh Whh

Figure 16: RNN Diagram

52 / 58

Recurrent Neural Networks
Forward Propagation
The hidden unit at time t is computed using

h(t) = σ(Whxx(t) + Whhh(t−1)). (63)

Note this requires the initialization of h(0). The output at each time step is then
computed using.

ŷ(t) = Wyhh(t). (64)

y(t)

h(t)

x(t)

y(t+1)

h(t+1)

x(t+1)

y(t−1)

h(t−1)

x(t−1)

h(...)h(...)

Whx

Wyh

Whh

Whx

Wyh

Whx

Whh

Wyh

Whh Whh

Figure 17: RNN diagram.

53 / 58

Attitude output from NNs: Quaternions
I Recall that a unit quaternion q = [εTη]T can be used to represent attitude.

I However, quaternions must satisfy the following unit-norm constraint,

qTq = 1. (65)

I We can normalized an un-normalized quaternion q∗ with

q =
q∗√
q∗Tq∗

, σnorm(q∗) (66)

ε∗x

ε∗y

ε∗z

η∗

εx

εy

εz

η

Normalize

54 / 58

Attitude output from NNs: Quaternions

I Our “neural network” can be whatever we want! As long as we have a
well-defined derivative.

I Thankfully,
∂σnorm

∂q∗
=

q∗
T√

q∗Tq∗
. (67)

55 / 58

Attitude output from NNs: DCMs SO(3)

I Neural Networks can also predict DCMs C ∈ SO(3) directly.

CTC = 1 (68)

I DCMs must also satisfy an orthonormality constraint

I We can take the same philosophy and just normalized an un-normalized
DCM (just a matrix) C∗ ∈ R3×3

...
...

c∗12

...

c∗11

c∗33

c12

...

c11

c33

Normalize

56 / 58

Attitude output from NNs: DCMs SO(3)

I In [5], it is shown that the best option for training is to use an SVD to
normalize a DCM.

I Let C∗ = UΣVT be a SVD. A DCM can be obtained with

C = UΣ̃VT ∈ SO(3), where Σ̃ = diag(1, . . . , 1,det(UVT)) (69)

, σSVD(C∗) (70)

I It turns out that
σSVD(C∗) = arg min

C∈SO(3)

‖C− C∗‖2F (71)

and that the derivative of σSVD(C∗) is also well defined! (See [5]).

57 / 58

References

[1] W. Zhao, A. Goudar, J. Panerati, and A. P. Schoellig, “Learning-based
Bias Correction for Ultra-wideband Localization of Resource-constrained
Mobile Robots,”, no. ii, 2020.

[2] M. Luiza, C. Vianna, E. Goubault, and S. Putot, “Neural Network Based
Model Predictive Control for an Autonomous Vehicle,”,

[3] M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU Dead-Reckoning,”
IEEE Transactions on Intelligent Vehicles, pp. 1–1, 2020. arXiv:
1904.06064. [Online]. Available:
https://github.com/mbrossar/ai-imu-dr.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[5] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa,
A. Rostamizadeh, and A. Makadia, “An Analysis of SVD for Deep
Rotation Estimation,”, no. 3, pp. 1–18, 2020. arXiv: 2006.14616.
[Online]. Available: http://arxiv.org/abs/2006.14616.

58 / 58

https://arxiv.org/abs/1904.06064
https://github.com/mbrossar/ai-imu-dr
http://www.deeplearningbook.org
https://arxiv.org/abs/2006.14616
http://arxiv.org/abs/2006.14616

	References

