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Pop Quiz!

What do all the following estimation algorithms have in common?
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They all assume the state distribution is Gaussian.

» This makes them Gaussian assumed density filters.
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A Non-Gaussian Example

5 A
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X
» Suppose we know a robot lies somewhere inside the region
x =r?% € [[-10 —5]T,[10 5]T].
> The robot gets distance measurements to two landmarks ¢4, ¢> (black
triangles) with measurement model

I'Zw o £jw

.+v, v~ N(0, R) (1)

Yi =
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A Non-Gaussian Exam
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> We are already doing something impossible with Gaussian estimators,
we have a uniform prior

—-10 10

p(Xo) = Unif 5 || 5 .
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A Non-Gaussian Example

5,

» Obtaining a single distance measurement to the top landmark, the
distribution of positions lies on a circle.

» Gaussian distributions always look like ellipses, so a Gaussian estimator
would do a horrible job here.
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A Non-Gaussian Example

5,

» Obtaining a second distance measurement to the bottom landmark, we
now have two possible ambiguous locations where the robot could be.
» The distribution is multi-modal.
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Review: Probability Density Functions

Probability Density Function (PDF)

A continuous PDF is a function p : R™ — R that satisfies the axiom of total
probability,

b
/ p(x)dx = 1. (2)

If the random variable x € [a, b] is distributed according to p(x), it is written as
X ~ p(x).

Gaussian PDFs

A Gaussian PDF with mean p and covariance X is denoted as
p(x) = N(u, X), where

N(p,2) =

Ttm) - (—;(x WTE (e m) . @)
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The Usual Estimation Setup
> We will assume there exists a process model of the form

X = f(Xp—1, Wp—1, Wi—1), Wi—1 ~ D(Wi—1). (4)

Markov Assumption [2, Ch. 4.1]

The current state x;, is independent of anything before k — 1, if the state and
input x;_1,u;_; are known:

p(Xk\Xkal,llo:kfh)’o:kq) = p(Xk|Xk71,Uk71)~ (5)

» We will assume there is a measurement model of the form

Vi = &(Xk, Vi), Vi ~ p(Vi). (6)

Conditional Independence Assumption [2, Ch. 4.1]

The current measurement y;. given the current state x;, is conditionally
independent of the measurement and state histories:

P(Yk|X1:5, Y1:6—1) = D(V&|Xk) (7)
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The Task of All Estimators

All estimators seek to compute, or represent in some way, the posterior
distribution

p(Xo:k\yO:muo:k—l), (8)
where

> xox = [x{ ...x]]T = xis the state,
> yo.r. =y are the output measurements,
> ug.;—1 = u are the input measurements,

> and we also have some prior information p(x).
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The Task of All Estimators

All estimators seek to compute, or represent in some way, the posterior
distribution

p(Xo:k\yO:muo:k—l), (8)
where

> xox = [x{ ...x]]T = xis the state,
> yo.r. =y are the output measurements,
> ug.;—1 = u are the input measurements,

> and we also have some prior information p(x).

When filtering, such as an EKEF, the output is information about the current
state x;, only, given all earlier measurements

p(Xk\YO:k7UO:k71)~ (9)

In general, (9) is an extremely complicated, intractable expression.
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Review: Examples of Some Known PDFs

In certain cases, we do have nice expressions for some PDFs.

> If we have an initial guess (a prior) of the state with mean x, and
covariance Py, then

p(x0) = N (%0, Pp) = ; Xo — Xo) Py (xo — 5‘0)) .

exp [ —=(
dCt(2ﬂ'P0) ’ (

7130



Review: Examples of Some Known PDFs

In certain cases, we do have nice expressions for some PDFs.

> If we have an initial guess (a prior) of the state with mean x, and
covariance Py, then
. P 1 < \Tp—1 <
p(Xo) :N(XO>PO) = — €Xp *i(xo —Xo) | (X0 —Xo) | -
dCt(27TPO)

> If we have a nonlinear process model with additive noise
X = f(Xp—1,up—1) + Wr—1, Wi_1 ~ N(0,Qx—1) then

p(Xg[Xp—1,up—1) = N (f(xg—1,u5-1), Qr_1)

- mexp (;m (i me 1) TQ Y (% — f(xk_l,uk_n)) \
&
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Review: Examples of Some Known PDFs

» If we have a nonlinear measurement model with additive noise
Y. = &(Xx) + Vi, Vi ~ N(0,Ry) then

p(yk|xk‘) = N<g(xk)a Rk)

R . (—1<yk ~ g(x)) Ry (v — g(xm) . (12)

\/det(27rRk) 2
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Review: Bayes’ Rule, Marginalization
Bayes’ Rule

Any joint PDF p(x,y) can be written as

p(x,y) = p(y|x)p(x) = p(x|y)p(y)

9/30



Review: Bayes’ Rule, Marginalization
Bayes’ Rule

Any joint PDF p(x,y) can be written as

P(x.) = p(YX)P(X) = p(XIY)p(Y) = plxly) = =8

The last equation is known as Bayes’ Rule.

PX)P(X)
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Review: Bayes’ Rule, Marginalization
Bayes’ Rule

Any joint PDF p(x,y) can be written as

p(x,y) = p(y|x)p(x) = p(x|y)p(y) = p(xly) =

The last equation is known as Bayes’ Rule.

Definition (Marginalization)

Recall that marginalization refers to integrating a joint PDF p(x,y) with respect
to some of the variables, such as x

/ p(x, y)dx = / p(y[%)p(x)dx = / p(x]y)p(¥)dx = p(y) / p(x]y)dx = p(y).
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Review: Bayes’ Filter
> Back to our goal of determining the posterior distribution p(xx|y, u), we
can use Bayes’ rule to write

p(xk|y,u) = 77[’()’%:\Xk)p(xk\“d’&k—l)- (16)
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Review: Bayes’ Filter
> Back to our goal of determining the posterior distribution p(xx|y, u), we
can use Bayes’ rule to write

p(Xklyvu) = 77]7(Yk‘Xk)p(xk‘uJ’O:k—l)- (16)

> For the second term, we can insert a dependence on x;_; through
marginalization,

p(Xk|w, yo:u—1) = /p(Xk’Xk—1|u,y0:k71)ka71 (17)
:/P(Xk|“7YO:k—hXk—l)p(xk—ﬂll»YO:k—1)ka_1

:/P(Xk|Xk717Uk71)p(Xk71|ll,yO:k71)ka71. (18)
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Review: Bayes’ Filter
> Back to our goal of determining the posterior distribution p(xx|y, u), we
can use Bayes’ rule to write

p(Xklyvu) = 77]7(Yk‘Xk)p(xk‘uJ’O:k—l)- (16)

> For the second term, we can insert a dependence on x;_; through
marginalization,

p(Xk[w, yor—1) = /p(Xk7kal|uay0:k71)dxkfl (17)
:/p(Xk|u7YO:k—lyXk—l)p(Xk—l‘ll,yO;k_1)ka_1
=/p(Xk|Xk717“kfl)p(kal|117Y0:k71)dxk—1~ (18)

Bayes’ Filter
Substituting (18) into (16) gives Bayes'’ filter,
p(xkly, w) = np(yr|xx) /p(Xk|Xk—1,llk—1)p(Xk—1|ll, Yo:k—1)dXp 1. (19)
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Monte Carlo Integration

» Clearly, we need a method to evaluate generic integrals of the form

Elh(x)] = / h(x)p(x]y)dx. (20)
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Monte Carlo Integration
» Clearly, we need a method to evaluate generic integrals of the form
E()] = [ hxp(xly)ax (20)

» In an ideal Monte Carlo approximation, we can draw samples
x() ~ p(x]y), i = 1,..., N and approximate the integral with

1 .
Eh(x)] ~ ¥ Zh(x(’)). (21)
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Monte Carlo Integration Example

20 Samples 100 Samples
03 Integral Value: 0.89187 03 Integral Value: 1.0961
0.25 -
02t
5
=015 1
&
01
0.05 |-
0
5 5 5
T
Estimate
_;8 15 True Value | |
3
N
= 1
80
2
= 05
=
0 - .
0 05 1 15 2
Number of Samples x10*

Figure 1: Computation of the integral [ z*p(z)dz where p(z) = N(0, 1).
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Starting Simple: A Prior and One Measurement

Lets start by considering just a single correction step. That is, we have
access to

» some prior information of our state p(xo),
» one measurement y, with measurement model,
Yo = g(Xo) + Vo, vo ~ p(vo) (22)

and hence we assume that we know p(yg|xo).

The posterior distribution is
p(Xo[Yo)- (23)
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Importance Sampling
> In this case, integrals to compute will be of the form [ h(xo)p(xo|yo)dxo.
> Unfortunately, even sampling from p(xq|yo) is difficult, if not impossible.

> Hence, we will introduce an importance distribution m(xq|yo) that we can
sample from,

/h(Xo)P(XO\YO)dXo = / (h(Xo)M) 7(Xo|yo)dxo. (24)

> As such, after sampling x() ~ 7 (x¢yo), the integral can be approximated
with

Bihiro)] = £ 3 288 1000, (25)
0 - - 0
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Importance Sampling

> ...except we cannot even evaluate p(x((f) lyo), in general.

» But, using Bayes’ rule,

_ p(yolxo)p(x0)
p(Xolyo) = fp()’o X0)p(x0)dxXg .
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Importance Sampling
> ...except we cannot even evaluate p(x((f) lyo), in general.

» But, using Bayes’ rule,

» Hence,

Elh(xo)]

~
~

p(xolyo) =

/h(XO) (Xolyo)dxo =

f (1’()0\"0)1’("0)}1

7(Xolyo)

p(¥o|xo0)p(Xo)

J p(yolxo)p(xo)dxo”

thO

p(Yo \XU) (Xo )dXO

J p(yolx0)p(x0)dxo

(o)) 7(x0[¥0)dxo

f (p()o [X0)p(x0)

7 (X0

1 N ply
NZiﬂ

) ) 7 (olyo o

POy PGy

(x5 |yo)

(4)
0

)

1 N
N Dic

(%) i
P(yolxq )p(xl(l ) )

(x5 |yo)
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Importance Sampling

p(olxg”)p(xi”)

N
N (x5 |yo) (i)
Elh(x)] ~ Z ZN p<y(:)\x((a'0))p(xéi>) h(x,") (31)
i=1 i=1" e\

m(x5”[yo)

i I NS (32)
= —_— b.¢
i=1 Z'fil w*® ’

—_———

w(®)
where the un-normalized weights are defined as
or® — Pl ()

: (33)
(x5 |yo)

> At last, (32) is something we can compute. The posterior can also be
approximated as
p(Xolyo) ~ Zw D6(x0 — x3) (34)

where 4(-)is the Dirac delta functlon.
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Importance Sampling Example

2%y

5 ey R ; L
. / ; e 2

> We will use the earlier example, choosing
7(Xoly0) = p(x0) = Unif([-10 —5]7,[10,5]"). (35)

and we receive a distance measurement y, to the top landmark.
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Importance Sampling Example

-5..‘”- ﬁ:;.{'-ﬂ;'.?.; ”» AT ¥
R e
LAY R ';?ﬁf,, ‘ iR,
v oo ﬁag &‘. o ;E
S ?’5:%'.

£y ,:’ l;:_

. t',,.'

o --..;‘t

*ooteeny

» The samples’ color have been scaled according to their weight w(®).
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Importance Sampling Example 2

5

» As another example, we choose
7(Xolyo) = Unif([-10 — 5], [10,5]T). (36)

and we have a prior p(xo) = N (3.2 1.8]T,1
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Importance Sampling Example 2

» The samples’ color have been scaled according to their weight w(®).
> Now, what about the case with multiple measurements?
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Sequential Importance Sampling

> Let’'s generalize the previous importance sampling procedure to the
posterior given many measurements p(Xo.x|¥o.x, Wo:x—1) = p(x|y, u).

» Using the Markov and conditional independence assumptions, as well as
Bayes’ rule,

p(xly, w) = np(yi|Xi)p(Xk[Xk—1, Ug—1)P(X0:5—1|Y0:k—1, W). (37)

> Repeating the same importance sampling derivation as before will
eventually give the following un-normalized weights

W — P(Yk:\XZJI))P(X;EL”XEQU“k—l)P(thL—ﬂYo:kfbu)
o=

Oy, u) (38)
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Sequential Importance Sampling
» The importance distribution can be written as,
m(x|y,u) = 7(Xg[X0:1—1, ¥, W) 7 (X0:k—1|Y0:1—1, 1)
» Thus the un-normalized weights can be written as

W p(yelx ) )p x| ugemr) p(xy
0 =

0:271 [Yo:r—1,1)
O O T O
2,0

i@ PO ek gy
Wy W = Wiy

(x x5 y,u)

after which, they should be normalized to sum to 1.

» We have a recursive expression, where the weights are “updated”.
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“Bootstrapping” the Importance Distribution

> If we choose (x,[x}_,,y,u) = p(x;/x\” |, u,_1) as the importance
distribution, the weights becomes

@) _ 0 PO we) 42

Wy, =We 2y (i) 1.(3) ) ( )
p(Xk |Xk71’u/€71)

= w® pylx). (43)

> This forms the basis of the most popular particle filter, the bootstrap
particle filter.
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Sequential Importance Sampling Example

Red dot is the true
position.

Xp = Xp_1 + Atug_q

u(t) = [cos(t) —Sin(t)]T

v = [ — e
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Resampling

> As is, the filter will have a degeneracy problem (2, 3].

» That is, almost all of the weights will go to 0, except one, which will go to
1.
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> As is, the filter will have a degeneracy problem (2, 3].

» That is, almost all of the weights will go to 0, except one, which will go to
1.

» This problem can be solved by resampling.
> Make copies of samples with high weights.
» Discard samples with low weights.

> Interpret the weights as the probability of making a copy of the sample.
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Resampling

> As is, the filter will have a degeneracy problem [2, 3].

» That is, almost all of the weights will go to 0, except one, which will go to
1.

» This problem can be solved by resampling.

> Make copies of samples with high weights.

» Discard samples with low weights.
> Interpret the weights as the probability of making a copy of the sample.
» There are many resampling strategies [3]:

»> multinomial resampling;

> residual resampling;
> stratified resampling;
>

systematic resampling.
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Systematic Resampling
From N normalized weights w(?), systematic resampling proceeds as follows.

1. Create bins with boundaries 3,, according to 3, = > | w®.
2. Select a random number A ~ Unif(0,1/N).
3. Draw N new samples using the look-up values
¢;=A+j(1/N), j=0,....N—1 (44)
and choosing the sample whose bin contains ;.

4. Reset all the weights to w(® = 1/N.

w® w® w® w® w® w® w® w® w10

0 0.2 0.4 0.6 0.8 1

Figure 2: Systematic resampling schematic for N = 10. Red dots are ¢; values.
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Systematic Resampling
This completes the plain-vanilla bootstrap particle filter.

-10 -5 0 5 10
xT

Figure 3: (top) Before resampling. (bottom) After resampling.
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Sample Impoverishment

» Resampling can occasionally result in sample impoverishment.
» We end up with a large amount of copies of just a few samples.
» This often happens when process noise is low.

> Suggestions to fix this problem can be found in [3].

ROENE) w® w9, 0D

A Y L r Y L rY Y L rY rY L Y rY

0 0.2 0.4 0.6 0.8 1

Figure 4: Excessive copies of a single sample, results in loss of diversity.
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Sequentlal Importance Resampling (Particle Filter)

Red dot is the true
position.

X = Xp_1 + Atug_4

u(t) = [cos(t) —Sin(t)]T

v = [ — e

5
10 -0

10
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Summary
Bootstrap Particle Filter (resampling at every step)

Assuming that we have x,(fll, i=1,..., N samples from the previous time

step, which together represent p(xx—1|yo:x—1,Uo.x—2), the PF proceeds as
follows.

Predict: 4
1. Draw N noise samples wfj) from p(wy,).
2. Compute the “predicted particles” with

x,(ci) = f( ,(Ql,uk_l,w,(:)), 1=1,...,N, (45)
which now approximate p(Xx|yo:x—1,00:k—1)-
Correct:
1. Compute the un-normalized weights as
wi = p(yelx(”) (46)

and normalize them to sum to 1.
2. Do resampling.




Advantages and Disadvantages

Advantages:
» Easy to implement.

» Does not require analytical expressions for f(-) and g(-), nor their
derivatives.

> Works with any noise distribution, not just Gaussian.
» Can represent non-Gaussian posteriors.
Disadvantages:
> It has its own issues, such as sample impoverishment.
> Computationally demanding. For comparison:
> EKF requires 1 function evaluation of f(-) and g(-);

> UKF requires 2L + 1 (usually 30-50) function evaluations f(-) and g(-) where
L = dim(xx) + dim(wg);

> PF requires N (anywhere from 500-50000+) f(-) and g(-) evaluations.
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