Particle Filter

Charles C. Cossette

McGill University, Department of Mechanical Engineering

畧 McGill

March 5, 2021

Pop Quiz!

What do all the following estimation algorithms have in common?

Pop Quiz!

What do all the following estimation algorithms have in common?

- Kalman filter
- Extended Kalman filter (EKF)
- Iterated EKF
- Invariant EKF
- Rauch-Tung-Striebel Smoother
- Sliding Window Filter
- Batch estimator
- Sigma-point Kalman filter (i.e. UKF, CKF, GHKF)
- Iterated Sigma-point Kalman filter
- ESGVI [1]

Pop Quiz!

What do all the following estimation algorithms have in common?

- Kalman filter
- Extended Kalman filter (EKF)
- Iterated EKF
- Invariant EKF
- Rauch-Tung-Striebel Smoother
- Sliding Window Filter
- Batch estimator
- Sigma-point Kalman filter (i.e. UKF, CKF, GHKF)
- Iterated Sigma-point Kalman filter
- ESGVI [1]

They all assume the state distribution is Gaussian.

- This makes them Gaussian assumed density filters.

A Non-Gaussian Example

- Suppose we know a robot lies somewhere inside the region $\mathbf{x}=\mathbf{r}_{a}^{z w} \in\left[[-10-5]^{\top},\left[\begin{array}{ll}10 & 5\end{array}\right]^{\top}\right]$.
- The robot gets distance measurements to two landmarks ℓ_{1}, ℓ_{2} (black triangles) with measurement model

$$
\begin{equation*}
y_{j}=\left\|\mathbf{r}_{a}^{z w}-\mathbf{r}_{a}^{\ell_{j} w}\right\|+v, \quad v \sim \mathcal{N}(0, R) \tag{1}
\end{equation*}
$$

A Non-Gaussian Example

- We are already doing something impossible with Gaussian estimators, we have a uniform prior

$$
p\left(\mathbf{x}_{0}\right)=\operatorname{Unif}\left(\left[\begin{array}{c}
-10 \\
-5
\end{array}\right],\left[\begin{array}{c}
10 \\
5
\end{array}\right]\right) .
$$

A Non-Gaussian Example

- Obtaining a single distance measurement to the top landmark, the distribution of positions lies on a circle.
- Gaussian distributions always look like ellipses, so a Gaussian estimator would do a horrible job here.

A Non-Gaussian Example

- Obtaining a second distance measurement to the bottom landmark, we now have two possible ambiguous locations where the robot could be.
- The distribution is multi-modal.

Review: Probability Density Functions

Probability Density Function (PDF)

A continuous PDF is a function $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies the axiom of total probability,

$$
\begin{equation*}
\int_{\mathbf{a}}^{\mathbf{b}} p(\mathbf{x}) \mathrm{d} \mathbf{x}=1 \tag{2}
\end{equation*}
$$

If the random variable $\mathbf{x} \in[\mathbf{a}, \mathbf{b}]$ is distributed according to $p(\mathbf{x})$, it is written as $\mathbf{x} \sim p(\mathbf{x})$.

Gaussian PDFs

A Gaussian PDF with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ is denoted as $p(\mathbf{x})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\begin{equation*}
\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{\operatorname{det}(2 \pi \boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) . \tag{3}
\end{equation*}
$$

The Usual Estimation Setup

- We will assume there exists a process model of the form

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right), \quad \mathbf{w}_{k-1} \sim p\left(\mathbf{w}_{k-1}\right) \tag{4}
\end{equation*}
$$

Markov Assumption [2, Ch. 4.1]

The current state \mathbf{x}_{k} is independent of anything before $k-1$, if the state and input $\mathbf{x}_{k-1}, \mathbf{u}_{k-1}$ are known:

$$
\begin{equation*}
p\left(\mathbf{x}_{k} \mid \mathbf{x}_{1: k-1}, \mathbf{u}_{0: k-1}, \mathbf{y}_{0: k-1}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) \tag{5}
\end{equation*}
$$

- We will assume there is a measurement model of the form

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{g}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right), \quad \mathbf{v}_{k} \sim p\left(\mathbf{v}_{k}\right) \tag{6}
\end{equation*}
$$

Conditional Independence Assumption [2, Ch. 4.1]

The current measurement \mathbf{y}_{k} given the current state \mathbf{x}_{k} is conditionally independent of the measurement and state histories:

$$
\begin{equation*}
p\left(\mathbf{y}_{k} \mid \mathbf{x}_{1: k}, \mathbf{y}_{1: k-1}\right)=p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) \tag{7}
\end{equation*}
$$

The Task of All Estimators

All estimators seek to compute, or represent in some way, the posterior distribution

$$
\begin{equation*}
p\left(\mathbf{x}_{0: k} \mid \mathbf{y}_{0: k}, \mathbf{u}_{0: k-1}\right) \tag{8}
\end{equation*}
$$

where

- $\mathbf{x}_{0: k}=\left[\begin{array}{lll}\mathbf{x}_{0}^{\top} & \ldots & \mathbf{x}_{k}^{\top}\end{array}\right]^{\top}=\mathbf{x}$ is the state,
- $\mathbf{y}_{0: k}=\mathbf{y}$ are the output measurements,
- $\mathbf{u}_{0: k-1}=\mathbf{u}$ are the input measurements,
- and we also have some prior information $p\left(\mathbf{x}_{0}\right)$.

The Task of All Estimators

All estimators seek to compute, or represent in some way, the posterior distribution

$$
\begin{equation*}
p\left(\mathbf{x}_{0: k} \mid \mathbf{y}_{0: k}, \mathbf{u}_{0: k-1}\right) \tag{8}
\end{equation*}
$$

where

- $\mathbf{x}_{0: k}=\left[\begin{array}{lll}\mathbf{x}_{0}^{\top} & \ldots & \mathbf{x}_{k}^{\top}\end{array}\right]^{\top}=\mathbf{x}$ is the state,
- $\mathbf{y}_{0: k}=\mathbf{y}$ are the output measurements,
- $\mathbf{u}_{0: k-1}=\mathbf{u}$ are the input measurements,
- and we also have some prior information $p\left(\mathbf{x}_{0}\right)$.

When filtering, such as an EKF, the output is information about the current state \mathbf{x}_{k} only, given all earlier measurements

$$
\begin{equation*}
p\left(\mathbf{x}_{k} \mid \mathbf{y}_{0: k}, \mathbf{u}_{0: k-1}\right) \tag{9}
\end{equation*}
$$

In general, (9) is an extremely complicated, intractable expression.

Review: Examples of Some Known PDFs

In certain cases, we do have nice expressions for some PDFs.

- If we have an initial guess (a prior) of the state with mean $\check{\mathbf{x}}_{0}$ and covariance $\check{\mathbf{P}}_{0}$, then

$$
\begin{equation*}
p\left(\mathbf{x}_{0}\right)=\mathcal{N}\left(\check{\mathbf{x}}_{0}, \check{\mathbf{P}}_{0}\right)=\frac{1}{\sqrt{\operatorname{det}\left(2 \pi \check{\mathbf{P}}_{0}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)^{\mathrm{T}} \check{\mathbf{P}}_{0}^{-1}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)\right) \tag{10}
\end{equation*}
$$

Review: Examples of Some Known PDFs

In certain cases, we do have nice expressions for some PDFs.

- If we have an initial guess (a prior) of the state with mean $\check{\mathbf{x}}_{0}$ and covariance $\check{\mathbf{P}}_{0}$, then

$$
\begin{equation*}
p\left(\mathbf{x}_{0}\right)=\mathcal{N}\left(\check{\mathbf{x}}_{0}, \check{\mathbf{P}}_{0}\right)=\frac{1}{\sqrt{\operatorname{det}\left(2 \pi \check{\mathbf{P}}_{0}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)^{\top} \check{\mathbf{P}}_{0}^{-1}\left(\mathbf{x}_{0}-\check{\mathbf{x}}_{0}\right)\right) . \tag{10}
\end{equation*}
$$

- If we have a nonlinear process model with additive noise

$$
\begin{aligned}
& \mathbf{x}_{k}=\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)+\mathbf{w}_{k-1}, \mathbf{w}_{k-1} \sim \mathcal{N}\left(0, \mathbf{Q}_{k-1}\right) \text { then } \\
& p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)=\mathcal{N}\left(\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right), \mathbf{Q}_{k-1}\right) \\
&= \frac{1}{\sqrt{\operatorname{det}\left(2 \pi \mathbf{Q}_{k-1}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{x}_{k}-\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)^{\top} \mathbf{Q}_{k-1}^{-1}\left(\mathbf{x}_{k}-\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)\right)
\end{aligned}
$$

Review: Examples of Some Known PDFs

- If we have a nonlinear measurement model with additive noise $\mathbf{y}_{k}=\mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k}, \mathbf{v}_{k} \sim \mathcal{N}\left(0, \mathbf{R}_{k}\right)$ then

$$
\begin{align*}
p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) & =\mathcal{N}\left(\mathbf{g}\left(\mathbf{x}_{k}\right), \mathbf{R}_{k}\right) \\
& =\frac{1}{\sqrt{\operatorname{det}\left(2 \pi \mathbf{R}_{k}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{y}_{k}-\mathbf{g}\left(\mathbf{x}_{k}\right)\right)^{\top} \mathbf{R}_{k}^{-1}\left(\mathbf{y}_{k}-\mathbf{g}\left(\mathbf{x}_{k}\right)\right)\right) . \tag{12}
\end{align*}
$$

Review: Bayes' Rule, Marginalization

 Bayes' RuleAny joint PDF $p(\mathbf{x}, \mathbf{y})$ can be written as

$$
p(\mathbf{x}, \mathbf{y})=p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})=p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y})
$$

Review: Bayes’ Rule, Marginalization

Bayes' Rule

Any joint PDF $p(\mathbf{x}, \mathbf{y})$ can be written as

$$
\begin{equation*}
p(\mathbf{x}, \mathbf{y})=p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})=p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y}) \Longrightarrow p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})} \tag{13}
\end{equation*}
$$

The last equation is known as Bayes' Rule.

Review: Bayes' Rule, Marginalization

Bayes' Rule

Any joint PDF $p(\mathbf{x}, \mathbf{y})$ can be written as

$$
\begin{equation*}
p(\mathbf{x}, \mathbf{y})=p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})=p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y}) \Longrightarrow p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})} \tag{13}
\end{equation*}
$$

The last equation is known as Bayes' Rule.

Definition (Marginalization)

Recall that marginalization refers to integrating a joint PDF $p(\mathbf{x}, \mathbf{y})$ with respect to some of the variables, such as \mathbf{x}

$$
\begin{equation*}
\int p(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{x}=\int p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \mathrm{d} \mathbf{x}=\int p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y}) \mathrm{d} \mathbf{x}=p(\mathbf{y}) \underbrace{\int p(\mathbf{x} \mid \mathbf{y}) \mathrm{d} \mathbf{x}}_{=1}=p(\mathbf{y}) \tag{14}
\end{equation*}
$$

Review: Bayes' Rule, Marginalization

Bayes' Rule

Any joint PDF $p(\mathbf{x}, \mathbf{y})$ can be written as

$$
\begin{equation*}
p(\mathbf{x}, \mathbf{y})=p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})=p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y}) \Longrightarrow p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})} \tag{13}
\end{equation*}
$$

The last equation is known as Bayes' Rule.

Definition (Marginalization)

Recall that marginalization refers to integrating a joint PDF $p(\mathbf{x}, \mathbf{y})$ with respect to some of the variables, such as \mathbf{x}

$$
\begin{equation*}
\int p(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{x}=\int p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \mathrm{d} \mathbf{x}=\int p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y}) \mathrm{d} \mathbf{x}=p(\mathbf{y}) \underbrace{\int p(\mathbf{x} \mid \mathbf{y}) \mathrm{d} \mathbf{x}}_{=1}=p(\mathbf{y}) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})}=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{\int p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \mathrm{d} \mathbf{x}} \triangleq \eta p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) \tag{15}
\end{equation*}
$$

Review: Bayes' Filter

- Back to our goal of determining the posterior distribution $p\left(\mathbf{x}_{k} \mid \mathbf{y}, \mathbf{u}\right)$, we can use Bayes' rule to write

$$
\begin{equation*}
p\left(\mathbf{x}_{k} \mid \mathbf{y}, \mathbf{u}\right)=\eta p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) . \tag{16}
\end{equation*}
$$

Review: Bayes’ Filter

- Back to our goal of determining the posterior distribution $p\left(\mathbf{x}_{k} \mid \mathbf{y}, \mathbf{u}\right)$, we can use Bayes' rule to write

$$
\begin{equation*}
p\left(\mathbf{x}_{k} \mid \mathbf{y}, \mathbf{u}\right)=\eta p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \tag{16}
\end{equation*}
$$

- For the second term, we can insert a dependence on \mathbf{x}_{k-1} through marginalization,

$$
\begin{align*}
p\left(\mathbf{x}_{k} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) & =\int p\left(\mathbf{x}_{k}, \mathbf{x}_{k-1} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \mathrm{d} \mathbf{x}_{k-1} \tag{17}\\
& =\int p\left(\mathbf{x}_{k} \mid \mathbf{u}, \mathbf{y}_{0: k-1}, \mathbf{x}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \mathrm{d} \mathbf{x}_{k-1} \\
& =\int p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \mathrm{d} \mathbf{x}_{k-1} \tag{18}
\end{align*}
$$

Review: Bayes' Filter

- Back to our goal of determining the posterior distribution $p\left(\mathbf{x}_{k} \mid \mathbf{y}, \mathbf{u}\right)$, we can use Bayes' rule to write

$$
\begin{equation*}
p\left(\mathbf{x}_{k} \mid \mathbf{y}, \mathbf{u}\right)=\eta p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) . \tag{16}
\end{equation*}
$$

- For the second term, we can insert a dependence on \mathbf{x}_{k-1} through marginalization,

$$
\begin{align*}
p\left(\mathbf{x}_{k} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) & =\int p\left(\mathbf{x}_{k}, \mathbf{x}_{k-1} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \mathrm{d} \mathbf{x}_{k-1} \tag{17}\\
& =\int p\left(\mathbf{x}_{k} \mid \mathbf{u}, \mathbf{y}_{0: k-1}, \mathbf{x}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \mathrm{d} \mathbf{x}_{k-1} \\
& =\int p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \mathrm{d} \mathbf{x}_{k-1} \tag{18}
\end{align*}
$$

Bayes' Filter

Substituting (18) into (16) gives Bayes' filter,

$$
\begin{equation*}
p\left(\mathbf{x}_{k} \mid \mathbf{y}, \mathbf{u}\right)=\eta p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) \int p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{u}, \mathbf{y}_{0: k-1}\right) \mathrm{d} \mathbf{x}_{k-1} . \tag{19}
\end{equation*}
$$

Monte Carlo Integration

- Clearly, we need a method to evaluate generic integrals of the form

$$
\begin{equation*}
E[\mathbf{h}(\mathbf{x})]=\int \mathbf{h}(\mathbf{x}) p(\mathbf{x} \mid \mathbf{y}) \mathrm{d} \mathbf{x} . \tag{20}
\end{equation*}
$$

Monte Carlo Integration

- Clearly, we need a method to evaluate generic integrals of the form

$$
\begin{equation*}
E[\mathbf{h}(\mathbf{x})]=\int \mathbf{h}(\mathbf{x}) p(\mathbf{x} \mid \mathbf{y}) \mathrm{d} \mathbf{x} \tag{20}
\end{equation*}
$$

- In an ideal Monte Carlo approximation, we can draw samples $\mathbf{x}^{(i)} \sim p(\mathbf{x} \mid \mathbf{y}), i=1, \ldots, N$ and approximate the integral with

$$
\begin{equation*}
E[\mathbf{h}(\mathbf{x})] \approx \frac{1}{N} \sum_{i=1}^{N} \mathbf{h}\left(\mathbf{x}^{(i)}\right) \tag{21}
\end{equation*}
$$

Monte Carlo Integration Example

Figure 1: Computation of the integral $\int x^{2} p(x) \mathrm{d} x$ where $p(x)=\mathcal{N}(0,1)$.

Starting Simple: A Prior and One Measurement

Lets start by considering just a single correction step. That is, we have access to

- some prior information of our state $p\left(\mathbf{x}_{0}\right)$,
- one measurement \mathbf{y}_{0} with measurement model,

$$
\begin{equation*}
\mathbf{y}_{0}=\mathbf{g}\left(\mathbf{x}_{0}\right)+\mathbf{v}_{0}, \quad \mathbf{v}_{0} \sim p\left(\mathbf{v}_{0}\right) \tag{22}
\end{equation*}
$$

and hence we assume that we know $p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right)$.

The posterior distribution is

$$
\begin{equation*}
p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) . \tag{23}
\end{equation*}
$$

Importance Sampling

- In this case, integrals to compute will be of the form $\int \mathbf{h}\left(\mathbf{x}_{0}\right) p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) \mathrm{d} \mathbf{x}_{0}$.
- Unfortunately, even sampling from $p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)$ is difficult, if not impossible.
- Hence, we will introduce an importance distribution $\pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)$ that we can sample from,

$$
\begin{equation*}
\int \mathbf{h}\left(\mathbf{x}_{0}\right) p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) \mathrm{d} \mathbf{x}_{0}=\int\left(\mathbf{h}\left(\mathbf{x}_{0}\right) \frac{p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)}{\pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)}\right) \pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) \mathrm{d} \mathbf{x}_{0} \tag{24}
\end{equation*}
$$

- As such, after sampling $\mathbf{x}^{(i)} \sim \pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)$, the integral can be approximated with

$$
\begin{align*}
E\left[\mathbf{h}\left(\mathbf{x}_{0}\right)\right] & =\frac{1}{N} \sum_{i=1}^{N} \frac{p\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)}{\pi\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)} \mathbf{h}\left(\mathbf{x}_{0}^{(i)}\right) & \tag{25}\\
& \triangleq \sum_{i=1}^{N} w^{(i)} \mathbf{h}\left(\mathbf{x}_{0}^{(i)}\right), & w^{(i)}=\frac{1}{N} \frac{p\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)}{\pi\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)} \tag{26}
\end{align*}
$$

Importance Sampling

- ...except we cannot even evaluate $p\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)$, in general.
- But, using Bayes' rule,

$$
\begin{equation*}
p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)=\frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right)}{\int p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right) \mathrm{d} \mathbf{x}_{0}} . \tag{27}
\end{equation*}
$$

Importance Sampling

- ...except we cannot even evaluate $p\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)$, in general.
- But, using Bayes' rule,

$$
\begin{equation*}
p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)=\frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right)}{\int p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right) \mathrm{d} \mathbf{x}_{0}} . \tag{27}
\end{equation*}
$$

- Hence,

$$
\begin{align*}
& E\left[\mathbf{h}\left(\mathbf{x}_{0}\right)\right]=\int \mathbf{h}\left(\mathbf{x}_{0}\right) p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) \mathrm{d} \mathbf{x}_{0}=\frac{\int \mathbf{h}\left(\mathbf{x}_{0}\right) p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right) \mathrm{d} \mathbf{x}_{0}}{\int p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right) \mathrm{d} \mathbf{x}_{0}} \tag{28}\\
&=\frac{\int\left(\frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right)}{\pi\left(\mathbf{(x}_{0}\right)} \mathbf{h}\left(\mathbf{x}_{0}\right)\right.}{\left.\int\left(\mathbf{x}_{0}\right)\right) \pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) \mathrm{d} \mathbf{x}_{0}} \tag{29}\\
&\left.\left.\approx \frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right)}{\pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)}\right)\right) \pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) \mathrm{d} \mathbf{x}_{0} \tag{30}\\
& \frac{\frac{1}{N} \sum_{i=1}^{N} \frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}^{(i)}\right) p\left(\mathbf{x}_{0}^{(i)}\right)}{\pi\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)} \mathbf{h}\left(\mathbf{x}_{0}^{(i)}\right)}{\frac{1}{N} \sum_{i=1}^{N} \frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}^{(i)}\right) p\left(\mathbf{x}_{0}^{(i)}\right)}{\pi\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)}}
\end{align*}
$$

Importance Sampling

$$
\begin{align*}
E\left[\mathbf{h}\left(\mathbf{x}_{0}\right)\right] & \approx \sum_{i=1}^{N}\left(\frac{\frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}^{(i)}\right) p\left(\mathbf{x}_{0}^{(i)}\right)}{\pi\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)}}{\sum_{i=1}^{N} \frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}^{(i)}\right) p\left(\mathbf{x}_{0}^{(i)}\right)}{\pi\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)}}\right) \mathbf{h}\left(\mathbf{x}_{0}^{(i)}\right) \tag{31}\\
& =\sum_{i=1}^{N} \underbrace{\left(\frac{w^{*(i)}}{\sum_{i=1}^{N} w^{*(i)}}\right)}_{w^{(i)}} \mathbf{h}\left(\mathbf{x}_{0}^{(i)}\right) \tag{32}
\end{align*}
$$

where the un-normalized weights are defined as

$$
\begin{equation*}
w^{*(i)}=\frac{p\left(\mathbf{y}_{0} \mid \mathbf{x}_{0}^{(i)}\right) p\left(\mathbf{x}_{0}^{(i)}\right)}{\pi\left(\mathbf{x}_{0}^{(i)} \mid \mathbf{y}_{0}\right)} \tag{33}
\end{equation*}
$$

- At last, (32) is something we can compute. The posterior can also be approximated as

$$
\begin{equation*}
p\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right) \approx \sum_{i=1}^{N} w^{(i)} \delta\left(\mathbf{x}_{0}-\mathbf{x}_{0}^{(i)}\right) \tag{34}
\end{equation*}
$$

where $\delta(\cdot)$ is the Dirac delta function.

Importance Sampling Example

- We will use the earlier example, choosing

$$
\begin{equation*}
\pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)=p\left(\mathbf{x}_{0}\right)=\operatorname{Unif}\left([-10-5]^{\top},[10,5]^{\top}\right) \tag{35}
\end{equation*}
$$

and we receive a distance measurement y_{0} to the top landmark.

Importance Sampling Example

- The samples' color have been scaled according to their weight $w^{(i)}$.

Importance Sampling Example 2

- As another example, we choose

$$
\begin{equation*}
\pi\left(\mathbf{x}_{0} \mid \mathbf{y}_{0}\right)=\operatorname{Unif}\left([-10-5]^{\top},[10,5]^{\top}\right) \tag{36}
\end{equation*}
$$

and we have a prior $p\left(\mathbf{x}_{0}\right)=\mathcal{N}\left(\left[\begin{array}{ll}3.2 & 1.8\end{array}\right]^{\top}, \mathbf{1}\right)$.

Importance Sampling Example 2

- The samples' color have been scaled according to their weight $w^{(i)}$.
- Now, what about the case with multiple measurements?

Sequential Importance Sampling

- Let's generalize the previous importance sampling procedure to the posterior given many measurements $p\left(\mathbf{x}_{0: k} \mid \mathbf{y}_{0: k}, \mathbf{u}_{0: k-1}\right)=p(\mathbf{x} \mid \mathbf{y}, \mathbf{u})$.
- Using the Markov and conditional independence assumptions, as well as Bayes' rule,

$$
\begin{equation*}
p(\mathbf{x} \mid \mathbf{y}, \mathbf{u})=\eta p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right) p\left(\mathbf{x}_{0: k-1} \mid \mathbf{y}_{0: k-1}, \mathbf{u}\right) . \tag{37}
\end{equation*}
$$

- Repeating the same importance sampling derivation as before will eventually give the following un-normalized weights

$$
\begin{equation*}
w_{k}^{*(i)}=\frac{p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{(i)}\right) p\left(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right) p\left(\mathbf{x}_{0: k-1}^{(i)} \mid \mathbf{y}_{0: k-1}, \mathbf{u}\right)}{\pi\left(\mathbf{x}^{(i)} \mid \mathbf{y}, \mathbf{u}\right)} \tag{38}
\end{equation*}
$$

Sequential Importance Sampling

- The importance distribution can be written as,

$$
\begin{equation*}
\pi(\mathbf{x} \mid \mathbf{y}, \mathbf{u})=\pi\left(\mathbf{x}_{k} \mid \mathbf{x}_{0: k-1}, \mathbf{y}, \mathbf{u}\right) \pi\left(\mathbf{x}_{0: k-1} \mid \mathbf{y}_{0: k-1}, \mathbf{u}\right) \tag{39}
\end{equation*}
$$

- Thus the un-normalized weights can be written as

$$
\begin{align*}
w_{k}^{*(i)} & =\frac{p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{(i)}\right) p\left(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right)}{\pi\left(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{0: k-1}^{(i)}, \mathbf{y}, \mathbf{u}\right)} \underbrace{\frac{p\left(\mathbf{x}_{0: k-1}^{(i)} \mid \mathbf{y}_{0: k-1}, \mathbf{u}\right)}{\pi\left(\mathbf{x}_{0: k-1}^{(i)} \mid \mathbf{y}_{0: k-1}, \mathbf{u}\right)}}_{\triangleq w_{k-1}^{(i)}} \tag{40}\\
w_{k}^{*(i)} & =w_{k-1}^{(i)} \frac{p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{(i)}\right) p\left(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right)}{\pi\left(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{0: k-1}^{(i)}, \mathbf{y}, \mathbf{u}\right)} \tag{41}
\end{align*}
$$

after which, they should be normalized to sum to 1 .

- We have a recursive expression, where the weights are "updated".

"Bootstrapping" the Importance Distribution

- If we choose $\pi\left(\mathbf{x}_{k} \mid \mathbf{x}_{0: k-1}^{(i)}, \mathbf{y}, \mathbf{u}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right)$ as the importance distribution, the weights becomes

$$
\begin{align*}
w_{k}^{*(i)} & =w_{k-1}^{(i)} \frac{p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{(i)}\right) p\left(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right)}{p\left(\mathbf{x}_{k}^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{u}_{k-1}\right)}, \tag{42}\\
& =w_{k-1}^{(i)} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{(i)}\right) \tag{43}
\end{align*}
$$

- This forms the basis of the most popular particle filter, the bootstrap particle filter.

Sequential Importance Sampling Example

Red dot is the true position.

$$
\begin{gathered}
p\left(\mathbf{x}_{0}\right)= \\
\operatorname{Unif}\left(\left[\begin{array}{c}
-10 \\
-5
\end{array}\right],\left[\begin{array}{c}
10 \\
5
\end{array}\right]\right) \\
\mathbf{x}_{k}=\mathbf{x}_{k-1}+\Delta t \mathbf{u}_{k-1} \\
\mathbf{u}(t)=[\cos (t)-\sin (t)]^{\top} \\
y_{k}=\left\|\mathbf{x}_{k}-\mathbf{r}_{a}^{\ell w}\right\|
\end{gathered}
$$

Resampling

- As is, the filter will have a degeneracy problem [2, 3].
- That is, almost all of the weights will go to 0 , except one, which will go to 1.

Resampling

- As is, the filter will have a degeneracy problem [2, 3].
- That is, almost all of the weights will go to 0 , except one, which will go to 1.
- This problem can be solved by resampling.
- Make copies of samples with high weights.
- Discard samples with low weights.
- Interpret the weights as the probability of making a copy of the sample.

Resampling

- As is, the filter will have a degeneracy problem [2, 3].
- That is, almost all of the weights will go to 0 , except one, which will go to 1.
- This problem can be solved by resampling.
- Make copies of samples with high weights.
- Discard samples with low weights.
- Interpret the weights as the probability of making a copy of the sample.
- There are many resampling strategies [3]:
- multinomial resampling;
- residual resampling;
- stratified resampling;
- systematic resampling.

Systematic Resampling

From N normalized weights $w^{(i)}$, systematic resampling proceeds as follows.

1. Create bins with boundaries β_{m} according to $\beta_{m}=\sum_{i=1}^{m} w^{(i)}$.
2. Select a random number $\Delta \sim \operatorname{Unif}(0,1 / N)$.
3. Draw N new samples using the look-up values

$$
\begin{equation*}
\ell_{j}=\Delta+j(1 / N), \quad j=0, \ldots, N-1 \tag{44}
\end{equation*}
$$

and choosing the sample whose bin contains ℓ_{j}.
4. Reset all the weights to $w^{(i)}=1 / N$.

Figure 2: Systematic resampling schematic for $N=10$. Red dots are ℓ_{j} values.

Systematic Resampling

This completes the plain-vanilla bootstrap particle filter.

Figure 3: (top) Before resampling. (bottom) After resampling.

Sample Impoverishment

- Resampling can occasionally result in sample impoverishment.
- We end up with a large amount of copies of just a few samples.
- This often happens when process noise is low.
- Suggestions to fix this problem can be found in [3].

Figure 4: Excessive copies of a single sample, results in loss of diversity.

Sequential Importance Resampling (Particle Filter)

Red dot is the true position.

$$
\begin{gathered}
p\left(\mathbf{x}_{0}\right)= \\
\text { Unif }\left(\left[\begin{array}{c}
-10 \\
-5
\end{array}\right],\left[\begin{array}{c}
10 \\
5
\end{array}\right]\right) \\
\mathbf{x}_{k}=\mathbf{x}_{k-1}+\Delta t \mathbf{u}_{k-1} \\
\mathbf{u}(t)=[\cos (t)-\sin (t)]^{\top} \\
y_{k}=\left\|\mathbf{x}_{k}-\mathbf{r}_{a}^{\ell w}\right\|
\end{gathered}
$$

Summary

Bootstrap Particle Filter (resampling at every step)

Assuming that we have $\mathbf{x}_{k-1}^{(i)}, i=1, \ldots, N$ samples from the previous time step, which together represent $p\left(\mathbf{x}_{k-1} \mid \mathbf{y}_{0: k-1}, \mathbf{u}_{0: k-2}\right)$, the PF proceeds as follows.

Predict:

1. Draw N noise samples $\mathbf{w}_{k}^{(i)}$ from $p\left(\mathbf{w}_{k}\right)$.
2. Compute the "predicted particles" with

$$
\begin{equation*}
\mathbf{x}_{k}^{(i)}=\mathbf{f}\left(\mathbf{x}_{k-1}^{(i)}, \mathbf{u}_{k-1}, \mathbf{w}_{k}^{(i)}\right), \quad i=1, \ldots, N, \tag{45}
\end{equation*}
$$

which now approximate $p\left(\mathbf{x}_{k} \mid \mathbf{y}_{0: k-1}, \mathbf{u}_{0: k-1}\right)$.

Correct:

1. Compute the un-normalized weights as

$$
\begin{equation*}
w_{k}^{*(i)}=p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{(i)}\right) \tag{46}
\end{equation*}
$$

and normalize them to sum to 1 .
2. Do resampling.

Advantages and Disadvantages

Advantages:

- Easy to implement.
- Does not require analytical expressions for $\mathbf{f}(\cdot)$ and $\mathbf{g}(\cdot)$, nor their derivatives.
- Works with any noise distribution, not just Gaussian.
- Can represent non-Gaussian posteriors.

Disadvantages:

- It has its own issues, such as sample impoverishment.
- Computationally demanding. For comparison:
- EKF requires 1 function evaluation of $\mathbf{f}(\cdot)$ and $\mathbf{g}(\cdot)$;
- UKF requires $2 L+1$ (usually $30-50$) function evaluations $\mathbf{f}(\cdot)$ and $\mathbf{g}(\cdot)$ where $L=\operatorname{dim}\left(\mathbf{x}_{k}\right)+\operatorname{dim}\left(\mathbf{w}_{k}\right)$;
- PF requires N (anywhere from 500-50000+) $\mathbf{f}(\cdot)$ and $\mathbf{g}(\cdot)$ evaluations.

References

These slides are based on [2-4]

[1] T. D. Barfoot, J. R. Forbes, and D. Yoon, "Exactly Sparse Gaussian Variational Inference with Application to Derivative-Free Batch Nonlinear State Estimation (preprint),", vol. 1, no. 1, pp. 1-31, 2019. arXiv: 1911.08333. [Online]. Available: http://arxiv.org/abs/1911.08333.
[2] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press, 2010, pp. 1-232.
[3] J. Elfring, E. Torta, and R. V. D. Molengraft, "Particle Filters : A Hands-On Tutorial," Sensors, vol. 21, no. 438, pp. 1-28, 2021.
[4] T. Barfoot, State Estimation for Robotics. Toronto, ON: Cambridge University Press, 2019.

