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Pop Quiz!
What do all the following estimation algorithms have in common?

I Kalman filter

I Extended Kalman filter (EKF)

I Iterated EKF

I Invariant EKF

I Rauch–Tung–Striebel Smoother

I Sliding Window Filter

I Batch estimator

I Sigma-point Kalman filter (i.e. UKF, CKF, GHKF)

I Iterated Sigma-point Kalman filter

I ESGVI [1]

They all assume the state distribution is Gaussian.

I This makes them Gaussian assumed density filters.
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A Non-Gaussian Example

-10 -5 0 5 10

-5

0
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I Suppose we know a robot lies somewhere inside the region
x = rzwa ∈ [[−10 − 5]T, [10 5]T].

I The robot gets distance measurements to two landmarks `1, `2 (black
triangles) with measurement model

yj =
∥∥∥rzwa − r`jwa

∥∥∥+ v, v ∼ N (0, R) (1)
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A Non-Gaussian Example
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I We are already doing something impossible with Gaussian estimators,
we have a uniform prior

p(x0) = Unif

([
−10
−5

]
,

[
10
5

])
.
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A Non-Gaussian Example
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I Obtaining a single distance measurement to the top landmark, the
distribution of positions lies on a circle.

I Gaussian distributions always look like ellipses, so a Gaussian estimator
would do a horrible job here.
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A Non-Gaussian Example
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I Obtaining a second distance measurement to the bottom landmark, we
now have two possible ambiguous locations where the robot could be.

I The distribution is multi-modal.
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Review: Probability Density Functions

Probability Density Function (PDF)
A continuous PDF is a function p : Rn → R that satisfies the axiom of total
probability, ∫ b

a
p(x)dx = 1. (2)

If the random variable x ∈ [a,b] is distributed according to p(x), it is written as
x ∼ p(x).

Gaussian PDFs
A Gaussian PDF with mean µ and covariance Σ is denoted as
p(x) = N (µ,Σ), where

N (µ,Σ) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (3)

4 / 30



The Usual Estimation Setup
I We will assume there exists a process model of the form

xk = f(xk−1,uk−1,wk−1), wk−1 ∼ p(wk−1). (4)

Markov Assumption [2, Ch. 4.1]
The current state xk is independent of anything before k − 1, if the state and
input xk−1,uk−1 are known:

p(xk|x1:k−1,u0:k−1, y0:k−1) = p(xk|xk−1,uk−1). (5)

I We will assume there is a measurement model of the form

yk = g(xk, vk), vk ∼ p(vk). (6)

Conditional Independence Assumption [2, Ch. 4.1]
The current measurement yk given the current state xk is conditionally
independent of the measurement and state histories:

p(yk|x1:k, y1:k−1) = p(yk|xk) (7)
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The Task of All Estimators

All estimators seek to compute, or represent in some way, the posterior
distribution

p(x0:k|y0:k,u0:k−1), (8)

where

I x0:k = [xT0 . . . xT
k ]T = x is the state,

I y0:k = y are the output measurements,

I u0:k−1 = u are the input measurements,

I and we also have some prior information p(x0).

When filtering, such as an EKF, the output is information about the current
state xk only, given all earlier measurements

p(xk|y0:k,u0:k−1). (9)

In general, (9) is an extremely complicated, intractable expression.
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Review: Examples of Some Known PDFs

In certain cases, we do have nice expressions for some PDFs.

I If we have an initial guess (a prior) of the state with mean x̌0 and
covariance P̌0, then

p(x0) = N (x̌0, P̌0) =
1√

det(2πP̌0)
exp

(
−1

2
(x0 − x̌0)TP̌−10 (x0 − x̌0)

)
.

(10)

I If we have a nonlinear process model with additive noise
xk = f(xk−1,uk−1) + wk−1, wk−1 ∼ N (0,Qk−1) then

p(xk|xk−1,uk−1) = N (f(xk−1,uk−1),Qk−1)

=
1√

det(2πQk−1)
exp

(
−1

2
(xk − f(xk−1,uk−1))TQ−1k−1(xk − f(xk−1,uk−1))

)
.

(11)
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Review: Examples of Some Known PDFs

I If we have a nonlinear measurement model with additive noise
yk = g(xk) + vk, vk ∼ N (0,Rk) then

p(yk|xk) = N (g(xk),Rk)

=
1√

det(2πRk)
exp

(
−1

2
(yk − g(xk))TR−1k (yk − g(xk))

)
. (12)
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Review: Bayes’ Rule, Marginalization
Bayes’ Rule
Any joint PDF p(x, y) can be written as

p(x, y) = p(y|x)p(x) = p(x|y)p(y)

=⇒ p(x|y) =
p(y|x)p(x)

p(y)
. (13)

The last equation is known as Bayes’ Rule.

Definition (Marginalization)
Recall that marginalization refers to integrating a joint PDF p(x, y) with respect
to some of the variables, such as x∫

p(x, y)dx =

∫
p(y|x)p(x)dx =

∫
p(x|y)p(y)dx = p(y)

∫
p(x|y)dx︸ ︷︷ ︸
=1

= p(y).

(14)

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∫
p(y|x)p(x)dx

, ηp(y|x)p(x). (15)
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Review: Bayes’ Filter
I Back to our goal of determining the posterior distribution p(xk|y,u), we

can use Bayes’ rule to write

p(xk|y,u) = ηp(yk|xk)p(xk|u, y0:k−1). (16)

I For the second term, we can insert a dependence on xk−1 through
marginalization,

p(xk|u, y0:k−1) =

∫
p(xk, xk−1|u, y0:k−1)dxk−1 (17)

=

∫
p(xk|u, y0:k−1, xk−1)p(xk−1|u, y0:k−1)dxk−1

=

∫
p(xk|xk−1, uk−1)p(xk−1|u, y0:k−1)dxk−1. (18)

Bayes’ Filter
Substituting (18) into (16) gives Bayes’ filter,

p(xk|y,u) = ηp(yk|xk)

∫
p(xk|xk−1,uk−1)p(xk−1|u, y0:k−1)dxk−1. (19)

10 / 30



Review: Bayes’ Filter
I Back to our goal of determining the posterior distribution p(xk|y,u), we

can use Bayes’ rule to write

p(xk|y,u) = ηp(yk|xk)p(xk|u, y0:k−1). (16)

I For the second term, we can insert a dependence on xk−1 through
marginalization,

p(xk|u, y0:k−1) =

∫
p(xk, xk−1|u, y0:k−1)dxk−1 (17)

=

∫
p(xk|u, y0:k−1, xk−1)p(xk−1|u, y0:k−1)dxk−1

=

∫
p(xk|xk−1, uk−1)p(xk−1|u, y0:k−1)dxk−1. (18)

Bayes’ Filter
Substituting (18) into (16) gives Bayes’ filter,

p(xk|y,u) = ηp(yk|xk)

∫
p(xk|xk−1,uk−1)p(xk−1|u, y0:k−1)dxk−1. (19)

10 / 30



Review: Bayes’ Filter
I Back to our goal of determining the posterior distribution p(xk|y,u), we

can use Bayes’ rule to write

p(xk|y,u) = ηp(yk|xk)p(xk|u, y0:k−1). (16)

I For the second term, we can insert a dependence on xk−1 through
marginalization,

p(xk|u, y0:k−1) =

∫
p(xk, xk−1|u, y0:k−1)dxk−1 (17)

=

∫
p(xk|u, y0:k−1, xk−1)p(xk−1|u, y0:k−1)dxk−1

=

∫
p(xk|xk−1, uk−1)p(xk−1|u, y0:k−1)dxk−1. (18)

Bayes’ Filter
Substituting (18) into (16) gives Bayes’ filter,

p(xk|y,u) = ηp(yk|xk)

∫
p(xk|xk−1,uk−1)p(xk−1|u, y0:k−1)dxk−1. (19)

10 / 30



Monte Carlo Integration

I Clearly, we need a method to evaluate generic integrals of the form

E[h(x)] =

∫
h(x)p(x|y)dx. (20)

I In an ideal Monte Carlo approximation, we can draw samples
x(i) ∼ p(x|y), i = 1, . . . , N and approximate the integral with

E[h(x)] ≈ 1

N

N∑
i=1

h(x(i)). (21)
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Monte Carlo Integration Example

-5 0 5

0
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Integral Value: 0.89187

-5 0 5

0
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0.3
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Integral Value: 1.0961

0 0.5 1 1.5 2

10
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0
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1.5

2

Estimate

True Value

Figure 1: Computation of the integral
∫
x2p(x)dx where p(x) = N (0, 1).
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Starting Simple: A Prior and One Measurement

Lets start by considering just a single correction step. That is, we have
access to

I some prior information of our state p(x0),

I one measurement y0 with measurement model,

y0 = g(x0) + v0, v0 ∼ p(v0) (22)

and hence we assume that we know p(y0|x0).

The posterior distribution is
p(x0|y0). (23)
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Importance Sampling
I In this case, integrals to compute will be of the form

∫
h(x0)p(x0|y0)dx0.

I Unfortunately, even sampling from p(x0|y0) is difficult, if not impossible.

I Hence, we will introduce an importance distribution π(x0|y0) that we can
sample from,∫

h(x0)p(x0|y0)dx0 =

∫ (
h(x0)

p(x0|y0)

π(x0|y0)

)
π(x0|y0)dx0. (24)

I As such, after sampling x(i) ∼ π(x0|y0), the integral can be approximated
with

E[h(x0)] =
1

N

N∑
i=1

p(x(i)
0 |y0)

π(x(i)
0 |y0)

h(x(i)0 ) (25)

,
N∑
i=1

w(i)h(x(i)
0 ), w(i) =

1

N

p(x(i)0 |y0)

π(x(i)0 |y0)
. (26)

14 / 30



Importance Sampling
I . . . except we cannot even evaluate p(x(i)0 |y0), in general.

I But, using Bayes’ rule,

p(x0|y0) =
p(y0|x0)p(x0)∫
p(y0|x0)p(x0)dx0

. (27)

I Hence,

E[h(x0)] =

∫
h(x0)p(x0|y0)dx0 =

∫
h(x0)p(y0|x0)p(x0)dx0∫
p(y0|x0)p(x0)dx0

(28)

=

∫ (p(y0|x0)p(x0)
π(x0|y0) h(x0)

)
π(x0|y0)dx0∫ (p(y0|x0)p(x0)

π(x0|y0) )
)
π(x0|y0)dx0

(29)

≈
1
N

∑N
i=1

p(y0|x(i)0 )p(x(i)0 )

π(x(i)0 |y0)
h(x(i)0 )

1
N

∑N
i=1

p(y0|x(i)0 )p(x(i)0 )

π(x(i)0 |y0)

(30)

15 / 30



Importance Sampling
I . . . except we cannot even evaluate p(x(i)0 |y0), in general.

I But, using Bayes’ rule,

p(x0|y0) =
p(y0|x0)p(x0)∫
p(y0|x0)p(x0)dx0

. (27)

I Hence,

E[h(x0)] =

∫
h(x0)p(x0|y0)dx0 =

∫
h(x0)p(y0|x0)p(x0)dx0∫
p(y0|x0)p(x0)dx0

(28)

=

∫ (p(y0|x0)p(x0)
π(x0|y0) h(x0)

)
π(x0|y0)dx0∫ (p(y0|x0)p(x0)

π(x0|y0) )
)
π(x0|y0)dx0

(29)

≈
1
N

∑N
i=1

p(y0|x(i)0 )p(x(i)0 )

π(x(i)0 |y0)
h(x(i)0 )

1
N

∑N
i=1

p(y0|x(i)0 )p(x(i)0 )

π(x(i)0 |y0)

(30)

15 / 30



Importance Sampling

E[h(x0)] ≈
N∑
i=1

 p(y0|x(i)0 )p(x(i)0 )

π(x(i)0 |y0)∑N
i=1

p(y0|x(i)0 )p(x(i)0 )

π(x(i)0 |y0)

h(x(i)
0 ) (31)

=

N∑
i=1

(
w∗(i)∑N
i=1 w

∗(i)

)
︸ ︷︷ ︸

w(i)

h(x(i)
0 ) (32)

where the un-normalized weights are defined as

w∗(i) =
p(y0|x(i)

0 )p(x(i)
0 )

π(x(i)0 |y0)
. (33)

I At last, (32) is something we can compute. The posterior can also be
approximated as

p(x0|y0) ≈
N∑
i=1

w(i)δ(x0 − x(i)0 ) (34)

where δ(·)is the Dirac delta function.
16 / 30



Importance Sampling Example

-10 -5 0 5 10

-5

0

5

I We will use the earlier example, choosing

π(x0|y0) = p(x0) = Unif([−10 − 5]T, [10, 5]T). (35)

and we receive a distance measurement y0 to the top landmark.
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Importance Sampling Example

-10 -5 0 5 10

-5

0

5

I The samples’ color have been scaled according to their weight w(i).

17 / 30



Importance Sampling Example 2
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I As another example, we choose

π(x0|y0) = Unif([−10 − 5]T, [10, 5]T). (36)

and we have a prior p(x0) = N ([3.2 1.8]T, 1).
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Importance Sampling Example 2

-10 -5 0 5 10

-5

0

5

I The samples’ color have been scaled according to their weight w(i).
I Now, what about the case with multiple measurements?
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Sequential Importance Sampling

I Let’s generalize the previous importance sampling procedure to the
posterior given many measurements p(x0:k|y0:k,u0:k−1) = p(x|y,u).

I Using the Markov and conditional independence assumptions, as well as
Bayes’ rule,

p(x|y,u) = ηp(yk|xk)p(xk|xk−1,uk−1)p(x0:k−1|y0:k−1,u). (37)

I Repeating the same importance sampling derivation as before will
eventually give the following un-normalized weights

w
∗(i)
k =

p(yk|x(i)k )p(x(i)k |x
(i)
k−1,uk−1)p(x(i)0:k−1|y0:k−1,u)

π(x(i)|y,u)
(38)
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Sequential Importance Sampling

I The importance distribution can be written as,

π(x|y,u) = π(xk|x0:k−1, y,u)π(x0:k−1|y0:k−1,u). (39)

I Thus the un-normalized weights can be written as

w
∗(i)
k =

p(yk|x(i)
k )p(x(i)

k |x
(i)
k−1,uk−1)

π(x(i)k |x
(i)
0:k−1, y,u)

p(x(i)0:k−1|y0:k−1,u)

π(x(i)0:k−1|y0:k−1,u)︸ ︷︷ ︸
,w(i)

k−1

, (40)

w
∗(i)
k = w

(i)
k−1

p(yk|x(i)
k )p(x(i)k |x

(i)
k−1,uk−1)

π(x(i)k |x
(i)
0:k−1, y,u)

, (41)

after which, they should be normalized to sum to 1.

I We have a recursive expression, where the weights are “updated”.
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“Bootstrapping” the Importance Distribution

I If we choose π(xk|x(i)0:k−1, y,u) = p(xk|x(i)
k−1,uk−1) as the importance

distribution, the weights becomes

w
∗(i)
k = w

(i)
k−1

p(yk|x(i)
k )p(x(i)k |x

(i)
k−1,uk−1)

p(x(i)
k |x

(i)
k−1,uk−1)

, (42)

= w
(i)
k−1p(yk|x(i)k ). (43)

I This forms the basis of the most popular particle filter, the bootstrap
particle filter.
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Sequential Importance Sampling Example

-10 -5 0 5 10
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0

5

k = 0

-10 -5 0 5 10
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k = 1

-10 -5 0 5 10
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k = 2
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k = 3
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k = 4

-10 -5 0 5 10

-5

0

5

k = 5

Red dot is the true
position.

p(x0) =

Unif

([
−10
−5

]
,

[
10
5

])

xk = xk−1 + ∆tuk−1

u(t) = [cos(t) − sin(t)]T

yk =
∥∥xk − r`wa

∥∥
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Resampling

I As is, the filter will have a degeneracy problem [2, 3].

I That is, almost all of the weights will go to 0, except one, which will go to
1.

I This problem can be solved by resampling.

I Make copies of samples with high weights.

I Discard samples with low weights.

I Interpret the weights as the probability of making a copy of the sample.

I There are many resampling strategies [3]:

I multinomial resampling;

I residual resampling;

I stratified resampling;

I systematic resampling.
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Systematic Resampling
From N normalized weights w(i), systematic resampling proceeds as follows.

1. Create bins with boundaries βm according to βm =
∑m
i=1 w

(i).

2. Select a random number ∆ ∼ Unif(0, 1/N).

3. Draw N new samples using the look-up values

`j = ∆ + j(1/N), j = 0, . . . , N − 1 (44)

and choosing the sample whose bin contains `j .

4. Reset all the weights to w(i) = 1/N .

0 0.2 0.4 0.6 0.8 1

Figure 2: Systematic resampling schematic for N = 10. Red dots are `j values.
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Systematic Resampling
This completes the plain-vanilla bootstrap particle filter.

-10 -5 0 5 10

-5

0

5

-10 -5 0 5 10

-5

0

5

Figure 3: (top) Before resampling. (bottom) After resampling.
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Sample Impoverishment

I Resampling can occasionally result in sample impoverishment.

I We end up with a large amount of copies of just a few samples.

I This often happens when process noise is low.

I Suggestions to fix this problem can be found in [3].

0 0.2 0.4 0.6 0.8 1

Figure 4: Excessive copies of a single sample, results in loss of diversity.
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Sequential Importance Resampling (Particle Filter)
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Red dot is the true
position.
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Summary
Bootstrap Particle Filter (resampling at every step)

Assuming that we have x(i)k−1, i = 1, . . . , N samples from the previous time
step, which together represent p(xk−1|y0:k−1,u0:k−2), the PF proceeds as
follows.
Predict:

1. Draw N noise samples w(i)
k from p(wk).

2. Compute the “predicted particles” with

x(i)k = f(x(i)k−1,uk−1,w
(i)
k ), i = 1, . . . , N, (45)

which now approximate p(xk|y0:k−1,u0:k−1).
Correct:

1. Compute the un-normalized weights as

w
∗(i)
k = p(yk|x(i)k ) (46)

and normalize them to sum to 1.
2. Do resampling.
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Advantages and Disadvantages

Advantages:

I Easy to implement.

I Does not require analytical expressions for f(·) and g(·), nor their
derivatives.

I Works with any noise distribution, not just Gaussian.

I Can represent non-Gaussian posteriors.

Disadvantages:

I It has its own issues, such as sample impoverishment.

I Computationally demanding. For comparison:

I EKF requires 1 function evaluation of f(·) and g(·);

I UKF requires 2L+ 1 (usually 30-50) function evaluations f(·) and g(·) where
L = dim(xk) + dim(wk);

I PF requires N (anywhere from 500-50000+) f(·) and g(·) evaluations.
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