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Problem Statement

>

>

vV v.v .Yy

The batch state estimation framework is a robust, accurate state estimation technique.

However, as a robot moves in time, states cannot be added into the batch estimation problem
endlessly.

The complexity of the state estimation task would grow with the life of the robot.
A version of the batch estimation problem that has constant complexity is needed.
This is the sliding window filter.
Again, the following process and measurement models
Xp, = f(Xp—1, W1, Wi—1),
Yi = &(Xk, Vi),

will be used, where w;._1, v;, are zero-mean Gaussian noise.
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Scenario
> Suppose a robot starts at time k& = 0. It travels for K discrete time steps until it reaches time
k1.
X0 X1 XK1

perform full batch estimate

3/24



Scenario

> Suppose a robot starts at time k& = 0. It travels for K discrete time steps until it reaches time

ky.
X0 X1 XK1

perform full batch estimate

» The robot then continues to travel to time k.

X0 X1 Xk,

perform full batch estimate

Xki41 - -
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Scenario
> Suppose a robot starts at time k& = 0. It travels for K discrete time steps until it reaches time
k1.
X0 X1 XK1

perform full batch estimate

» The robot then continues to travel to time k.

X0 X1 Xk, Xki41 - Xk

perform full batch estimate

» The robot then removes the m oldest states from its active state vector, and performs a new
batch estimate.

new window of length K

X0 X1 .. Xm—-1 X;m .- Xk Xky41 -0 Xy

old window of length K'
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Marginalization of the Old States

» However, we should not simply “delete” the oldest states.
> It is more appropriate to marginalize them out.
Definition (Marginalization)

Recall that marginalization refers to integrating a joint PDF p(x,y) with respect to some of the
variables, such as x

/ " p(x,5)dx = / " p(xly)p(y)ox = p(v) / " p(xly)dx = p(5). (1)

—oo —oo =e®
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Marginalization of the Old States

new window of length K

X0 X1 ... X;m—1 X oe Xy Xp41 -0 Xgy

old window of length K

Using the colon notation,
> x(.,—1 are the states to be marginalized,
> x,,.;, are the states that remain in the window, and

> Xx,..x, are the states in the new window.
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Marginalization of the Old States

> We will start with the full batch MAP estimation problem,

X0:k, = arg max p(Xo:x, [Xo, 0, y)
X0:ko

where Xo.1, = {X0, .- Xk, J-

» The full joint PDF can be expanded into factors as follows

P(X0:k, X0, W, ¥) = aP(Vinereo [X, X0, W, Y 1i 1) P(X0:15 X0, W, Y1:m—1)
= ap(ym,:k:z ‘X)p(XO:kg ‘iOa u, yl:m—l)
= ap(ym:kg ‘X)p(xm:kg |i03 WYyiim—1; Xm)

X p(XO:mfl ‘X07 u, Y1;m71)

k2 ko
= 04( H P<Yk:|Xk:)> ( H p(Xk|Xk-—1,llk—1)>

k=m k=m+1

X p(Xm|X07 W Yiim—1, XO:mfl)p(XO:mfl ‘XOa u, yl:mfl)~
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Marginalization of the Old States

> We may now marginalize out the oldest states by integrating with respect to xg.,,, 1

oo ka ko
/ P(X0:k [X0, 0, Y)dX0:m—1 = a( H p(nm;)) ( H p(Xka—l,llk—ﬂ)

e k=m k=m-+1

oo
X / p(xm|i03 W, Yo:m—1, XO:m—l)p(XO:’m,—l ‘5(0, u, yo:m—l)dXO:m—l (3)

— o0

measurements process model
ko ko
p(XTVLZkz |i07 u, y) =« ( H p(}’ka:)) < H p(xk‘xk—la uk—1)>
k=m k=m+1

X p(xm‘imuO:m—leO:m—l)- (4)

new “prior”

> As with the batch MAP approach, we could now attempt to maximize (4), which would lead to
a least-squares problem.
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Determining the New Prior Distribution

» We are only missing one thing to set up our least-squares problem, which is
p(xm‘iOa uO:mflayo:mfl)

new window of length K

X0 X1 -+« Xm—1 Xm oo Xy Xki41 --- Xk

old window of length K

> That is, we are looking for the distribution of x,, given all the measurements that
occurred before it.

> (X [X0, Uo:m—1,Yo:m—1) takes the role of the new “prior”, which was p(xg|%¢) in the full batch
scenario.
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Determining the New Prior Distribution

Theorem (Marginalization)

Given the joint Gaussian probability density function

p(%,y) =N([ o } 7 [ e

Hy

the marginal PDF p(x) = [“°_ p(x,y)dy is given by

p(x) = N(/"'ra 3y

M

yxr

z)-
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Determining the New Prior Distribution

> Therefore, we can use our old estimates (from the previous window) {Xo.;n—1,Xm } = Xo.m 10
construct

. 1
p(XO:m|X0: Ug:m—1, yO:mfl) = ﬂ exp(fiem (XO:m)TWmem(XO:m))a (6)
where
Xo — Xo
x1 — £(xo, 19, 0)

€m (XO:m) = Xm — f(xm—lv “m—170) ’ (7)
Yo — &(x0,0)

Yn—-1— g(xm—lao)
W, = diag(P;*, QY. .., QL Ry, .., R ). (8)

y v m—1

> Although this is not Gaussian, it can be approximated as one by linearizing e;, (Xo.m)-

10/24



Watch out.

> Very important: e,, # e.
> e, is a “mini”/smaller vector that only contains errors involving the states being marginalized.

» You cannot reuse the same e, H, W matrices that were involved in the initial batch estimate.
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Determining the New Prior Distribution
» The mean and covariance of a Gaussian approximation to (6) are given by

Ho:m = |: /’ll(;:llm_l :| - |: XO:Am—l :l - (H;rnWmHm)_lH;rnWméma

_ Z30:'m—1 z:O:m—l,m _ T —1
EO:m N |: 2WL,O:m—l EHL N (HmeHm> ’

where
_ Oep(x)

_m:mA'mv Hm—
e € (X0:m ) %

X0:m
> This can finally be used to approximate p(X,|Xo, Uo:m—1, Yo:m—1) S

p(xm‘iOv uO:m—lvyo:m—l) ~ N(Nm; 27n,)~

> This is the only approximation made in going from the batch estimate to the sliding window

filter.

> Important: e, H,,, W,,, are different from e, H, W.
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State Estimate of the New Window

» Returning to the actual estimation, we can find the states which maximize
p(xm‘iOa uO:m—hYO:’m—l) ~ N(Nmy Zm) as the prior,

ko ko
X = argmaxa( H P(MM)) < H P(Xka:1,lllc)>P(Xm|io7ll():m17)’0:m1). (13)

k=m k=m-+1

» We proceed as with the batch MAP framework by minimizing the negative logarithm of (13),
which leads to the following nonlinear weighted least-squares problem ...
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State Estimate of the New Window

X = arg min %e(x)We(x) (14)

where

Xm — HBm
Xm+1 — f(xm7 U, 0)

e(x) = Xk _f(xszlvuszho) (15)

Ym — g(Xm, 0)
L Yo — &(Xk,,0) i
W =diag(3,,, Q. .-, QR R (16)

» This is solved as usual with the Gauss-Newton algorithm.
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Summary

Sliding Window Filter

To estimate the states in the window at time k., denoted x, starting with the estimate of the states
of the previous window at time k;, denoted xy, :

1. split the previous window’s estimate into the marginalized states and the remaining states

i = [ Xo:m 1 ] ; (17)

)A(m:kl
2. solve for w.,, 3, using (9), (10), (11);
3. construct the nonlinear least squares problem using (14), (15), (16);

4. solve the nonlinear least squares problem using the Gauss-Newton algorithm.
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Sliding Window Filter vs. Extended Kalman Filter

Norm of Estimation Error
6 T T T T
EKF
Sliding Window Filter ||

5 |
45 -
4 il

— 35 - ,

1 1 1 1 1 1
0 10 20 30 40 50 60
Time (s)

Figure 1: Estimation performance using real data of a quadrotor with an IMU and distance measurements to a
landmark.
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Information Form of the Sliding Window Filter

» Obtaining X, requires us to invert (HT W,,H,,,), which can be expensive for large window
sizes.

» We can completely avoid doing this if we instead parameterize
P(Xm [Xo, Woim—1, Yoim—1) = N 711, A) (18)

using the information form.
> We have easy access to the following matrices, which we can “split up” into sub-blocks as
follows

H;rnWmHm = Ao £ l: Aoim—1 AO:m—l,m :l

Am,O:mfl Am

H;rnwmém £ bO:m £ |: bO[:)m—l :|

» The goal is to find expressions for 7, A, as a function of the blocks of Ag.,,,bg.,,..
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Information Form of the Sliding Window Filter
> Recall that the mean and covariance of a Gaussian approximation to
P(X0:m X0, Wo:m—1, Yo:m—1) are given by

m— )A( m— — 5
Hoim = [ “(L ! } =[ % 1}—(HLWmHm) "H, W€, (19)
_ 230:m—1 2:O:m—l,m _ T —1
EO:m — |: 2m70:m—1 Em = (HmeHm> ) (20)
where Do (x)
e, (X
_m —€Cm X m)s Hm = L 21
¢ ¢ (XO' ) Ix X0:m ( )
> |t follows that the information matrix and information vector are
Agor Agipy—
A . A 0:m—1 0:m—1,m — 27‘1 _ HT WmHm 22
0: |: Am,O:m—l Am 0:m m ( )
a | Mom—1 | _ _ X0:m—1 T _
To:m = |: n :| - AO:mHO:m - AO:m |: )A( :| - Hmwmem (23)

> We seektofind A = X! and 17 = Ap,,.
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Recall Marginalization Theorems

Theorem (Marginalization)
Given the joint Gaussian probability density function

s =x ([ ][50 S )= ([ L& a2 ])

the marginal pdf p(x) = ff‘;o p(x,y)dy is given in covariance form as

>

p(X) = N(ﬂma 2zz)a (24)

or in information form as

where
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Information Form - Getting A

» The marginalization theorem allows us to directly obtain A with

A = Am - Am,O:mflA(;}anflAO:mfl,m~ (27)

» Similarly, we can also use the marginalization theorem to obtain 7, but this requires a bit more
algebra...
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Information Form - Getting i

» From the marginalization theorem,

n= Mm — Am'rO:m_lA(;:rlnfan:m,—l, (28)
where we have
o = Ao (29)
Mo:m—1 o AO:m—l AO:m—l,m )A(O:m—l 3 T -
{ Mm } B [ A 0:m—1 A, ] [ X, ] H, We, . (30)

A bO:m—l
b,

> Substituting in expressions for ng.,,,—1 and n,,, from (30) into (28), and doing the algebra
eventually yields

7_7 = Af‘m - (bm - Am,O:mflA(;:n_lbO:mfl) (31)
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Information Form - Prior Distribution

» Now that we have obtained expressions for 77, A, the new prior distribution can be expressed
in information form as

p(x7ﬂ|i07 u, y0:m71) = N ’FI ) (32)
= fexp < % WAXy, 4+ 7 X) , (33)
= Kexp ( % X)) TA (X — X)) (34)

(bm_AmOm 1A0m 1b0 m— I)Txm)7

where 8 and  are normalization constants.

A few algebra steps were skipped going from (33) to (34).
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Optimization Problem in Information Form
In information form, the least-squares problem gains an additional linear term

k= arg min (%e(x)TWe(x) (B~ A 1A 1D 1)) (35)
where

Xm*f(m

Xerl - f(Xnu U, 0)

e(X> = Xk, — f(xk'g—17 Ug,—1, 0) ) (36)
ym - g<X77u 0)

L Yk, — g<Xk72 ’ 0)
W =diag(A,Q; Y, -, Q. R, ... R ). (37)

°2

The Gauss-Newton algorithm can still be used with this additional linear term.
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