
Sliding Window Filtering
— Batch Estimation Using a Subset of Data —

Charles C. Cossette and Prof. James Richard Forbes

McGill University, Department of Mechanical Engineering

November 7, 2022

1 / 24

Problem Statement

I The batch state estimation framework is a robust, accurate state estimation technique.

I However, as a robot moves in time, states cannot be added into the batch estimation problem
endlessly.

I The complexity of the state estimation task would grow with the life of the robot.

I A version of the batch estimation problem that has constant complexity is needed.

I This is the sliding window filter.

I Again, the following process and measurement models

xk = f(xk−1,uk−1,wk−1),

yk = g(xk, vk),

will be used, where wk−1, vk are zero-mean Gaussian noise.

2 / 24

Scenario
I Suppose a robot starts at time k = 0. It travels for K discrete time steps until it reaches time
k1.

x0 x1 xk1︸ ︷︷ ︸
perform full batch estimate

xkr+1 . . . xk2

I The robot then continues to travel to time k2.

x0 x1 xk1︸ ︷︷ ︸
perform full batch estimate

xk1+1 . . . xk2

I The robot then removes the m oldest states from its active state vector, and performs a new
batch estimate.

new window of length K︷ ︸︸ ︷
x0 x1 . . . xm−1 xm . . . xk1︸ ︷︷ ︸

old window of length K

xk1+1 . . . xk2

3 / 24

Scenario
I Suppose a robot starts at time k = 0. It travels for K discrete time steps until it reaches time
k1.

x0 x1 xk1︸ ︷︷ ︸
perform full batch estimate

xkr+1 . . . xk2

I The robot then continues to travel to time k2.

x0 x1 xk1︸ ︷︷ ︸
perform full batch estimate

xk1+1 . . . xk2

I The robot then removes the m oldest states from its active state vector, and performs a new
batch estimate.

new window of length K︷ ︸︸ ︷
x0 x1 . . . xm−1 xm . . . xk1︸ ︷︷ ︸

old window of length K

xk1+1 . . . xk2

3 / 24

Scenario
I Suppose a robot starts at time k = 0. It travels for K discrete time steps until it reaches time
k1.

x0 x1 xk1︸ ︷︷ ︸
perform full batch estimate

xkr+1 . . . xk2

I The robot then continues to travel to time k2.

x0 x1 xk1︸ ︷︷ ︸
perform full batch estimate

xk1+1 . . . xk2

I The robot then removes the m oldest states from its active state vector, and performs a new
batch estimate.

new window of length K︷ ︸︸ ︷
x0 x1 . . . xm−1 xm . . . xk1︸ ︷︷ ︸

old window of length K

xk1+1 . . . xk2

3 / 24

Marginalization of the Old States

I However, we should not simply “delete” the oldest states.

I It is more appropriate to marginalize them out.

Definition (Marginalization)
Recall that marginalization refers to integrating a joint PDF p(x, y) with respect to some of the
variables, such as x∫ ∞

−∞
p(x, y)dx =

∫ ∞

−∞
p(x|y)p(y)dx = p(y)

∫ ∞

−∞
p(x|y)dx︸ ︷︷ ︸
=1

= p(y). (1)

4 / 24

Marginalization of the Old States

new window of length K︷ ︸︸ ︷
x0 x1 . . . xm−1 xm . . . xk1︸ ︷︷ ︸

old window of length K

xk1+1 . . . xk2

Using the colon notation,

I x0:m−1 are the states to be marginalized,

I xm:k1
are the states that remain in the window, and

I xm:k2
are the states in the new window.

5 / 24

Marginalization of the Old States
I We will start with the full batch MAP estimation problem,

x̂0:k2
= arg max

x0:k2

p(x0:k2
|x̌0,u, y) (2)

where x0:k2 = {x0, . . . , xk2}.
I The full joint PDF can be expanded into factors as follows

p(x0:k2
|x̌0,u, y) = αp(ym:k2

|x, x̌0,u, y1:m−1)p(x0:k2
|x̌0,u, y1:m−1)

= αp(ym:k2
|x)p(x0:k2

|x̌0,u, y1:m−1)

= αp(ym:k2
|x)p(xm:k2

|x̌0,u, y1:m−1, xm)

× p(x0:m−1|x̌0,u, y1:m−1)

= α

(
k2∏

k=m

p(yk|xk)

)(
k2∏

k=m+1

p(xk|xk−1,uk−1)

)
× p(xm|x̌0,u, y1:m−1, x0:m−1)p(x0:m−1|x̌0,u, y1:m−1).

6 / 24

Marginalization of the Old States
I We may now marginalize out the oldest states by integrating with respect to x0:m−1

∫ ∞

−∞
p(x0:k2

|x̌0,u, y)dx0:m−1 = α

(
k2∏

k=m

p(yk|xk)

)(
k2∏

k=m+1

p(xk|xk−1,uk−1)

)

×
∫ ∞

−∞
p(xm|x̌0,u, y0:m−1, x0:m−1)p(x0:m−1|x̌0,u, y0:m−1)dx0:m−1 (3)

p(xm:k2 |x̌0,u, y) = α

measurements︷ ︸︸ ︷(
k2∏

k=m

p(yk|xk)

) process model︷ ︸︸ ︷(
k2∏

k=m+1

p(xk|xk−1,uk−1)

)
× p(xm|x̌0,u0:m−1, y0:m−1)︸ ︷︷ ︸

new “prior”

. (4)

I As with the batch MAP approach, we could now attempt to maximize (4), which would lead to
a least-squares problem.

7 / 24

Determining the New Prior Distribution

I We are only missing one thing to set up our least-squares problem, which is
p(xm|x̌0,u0:m−1, y0:m−1)

new window of length K︷ ︸︸ ︷
x0 x1 . . . xm−1 xm . . . xk1︸ ︷︷ ︸

old window of length K

xk1+1 . . . xk2

I That is, we are looking for the distribution of xm given all the measurements that
occurred before it.

I p(xm|x̌0,u0:m−1, y0:m−1) takes the role of the new “prior”, which was p(x0|x̌0) in the full batch
scenario.

8 / 24

Determining the New Prior Distribution

Theorem (Marginalization)
Given the joint Gaussian probability density function

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
the marginal PDF p(x) =

∫∞
−∞ p(x, y)dy is given by

p(x) = N (µx,Σxx). (5)

9 / 24

Determining the New Prior Distribution
I Therefore, we can use our old estimates (from the previous window) {x̂0:m−1, x̂m} = x̂0:m to

construct
p(x0:m|x̌0,u0:m−1, y0:m−1) = β exp(−1

2
em(x0:m)TWmem(x0:m)), (6)

where

em(x0:m) =

x0 − x̌0
x1 − f(x0,u0, 0)

...
xm − f(xm−1,um−1, 0)

y0 − g(x0, 0)
...

ym−1 − g(xm−1, 0)

, (7)

Wm = diag(P−1
0 ,Q−1

1 , . . . ,Q−1
m ,R−1

0 , . . . ,R−1
m−1). (8)

I Although this is not Gaussian, it can be approximated as one by linearizing em(x0:m).

10 / 24

Watch out.

I Very important: em 6= e.

I em is a “mini”/smaller vector that only contains errors involving the states being marginalized.

I You cannot reuse the same e,H,W matrices that were involved in the initial batch estimate.

11 / 24

Determining the New Prior Distribution
I The mean and covariance of a Gaussian approximation to (6) are given by

µ0:m =

[
µ0:m−1

µm

]
=

[
x̂0:m−1

x̂m

]
− (HT

mWmHm)−1HT
mWmēm, (9)

Σ0:m =

[
Σ0:m−1 Σ0:m−1,m

Σm,0:m−1 Σm

]
= (HT

mWmHm)−1, (10)

where

ēm = em(x̂0:m), Hm =
∂em(x)

∂x

∣∣∣∣
x̂0:m

. (11)

I This can finally be used to approximate p(xm|x̌0,u0:m−1, y0:m−1) as

p(xm|x̌0,u0:m−1, y0:m−1) ≈ N (µm,Σm). (12)

I This is the only approximation made in going from the batch estimate to the sliding window
filter.

I Important: em,Hm,Wm are different from e,H,W.
12 / 24

State Estimate of the New Window

I Returning to the actual estimation, we can find the states which maximize
p(xm|x̌0,u0:m−1, y0:m−1) ≈ N (µm,Σm) as the prior,

x̂ = arg max
x

α

(
k2∏

k=m

p(yk|xk)

)(
k2∏

k=m+1

p(xk|xk−1,uk)

)
p(xm|x̌0,u0:m−1, y0:m−1). (13)

I We proceed as with the batch MAP framework by minimizing the negative logarithm of (13),
which leads to the following nonlinear weighted least-squares problem . . .

13 / 24

State Estimate of the New Window

x̂ = arg min
x

1

2
e(x)We(x) (14)

where

e(x) =

xm − µm

xm+1 − f(xm,um, 0)
...

xk2 − f(xk2−1,uk2−1, 0)
ym − g(xm, 0)

...
yk2
− g(xk2

, 0)

(15)

W = diag(Σ−1
m ,Q−1

m+1, . . . ,Q
−1
k2
,R−1

m , . . . ,R−1
k2

) (16)

I This is solved as usual with the Gauss-Newton algorithm.

14 / 24

Summary

Sliding Window Filter
To estimate the states in the window at time k2, denoted x̂k2

starting with the estimate of the states
of the previous window at time k1, denoted x̂k1

:

1. split the previous window’s estimate into the marginalized states and the remaining states

x̂0:k1 =

[
x̂0:m−1

x̂m:k1

]
; (17)

2. solve for µm,Σm using (9), (10), (11);

3. construct the nonlinear least squares problem using (14), (15), (16);

4. solve the nonlinear least squares problem using the Gauss-Newton algorithm.

15 / 24

Sliding Window Filter vs. Extended Kalman Filter

0 10 20 30 40 50 60

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 1: Estimation performance using real data of a quadrotor with an IMU and distance measurements to a
landmark.

16 / 24

Information Form of the Sliding Window Filter
I Obtaining Σm requires us to invert (HT

mWmHm), which can be expensive for large window
sizes.

I We can completely avoid doing this if we instead parameterize

p(xm|x̌0,u0:m−1, y0:m−1) = N−1(η̄, Λ̄) (18)

using the information form.

I We have easy access to the following matrices, which we can “split up” into sub-blocks as
follows

HT
mWmHm = Λ0:m ,

[
Λ0:m−1 Λ0:m−1,m

Λm,0:m−1 Λm

]
HT

mWmēm , b0:m ,

[
b0:m−1

bm

]

I The goal is to find expressions for η̄, Λ̄, as a function of the blocks of Λ0:m,b0:m.

17 / 24

Information Form of the Sliding Window Filter
I Recall that the mean and covariance of a Gaussian approximation to
p(x0:m|x̌0,u0:m−1, y0:m−1) are given by

µ0:m =

[
µ0:m−1

µm

]
=

[
x̂0:m−1

x̂m

]
− (HT

mWmHm)−1HT
mWmēm, (19)

Σ0:m =

[
Σ0:m−1 Σ0:m−1,m

Σm,0:m−1 Σm

]
= (HT

mWmHm)−1, (20)

where

ēm = em(x̂0:m), Hm =
∂em(x)

∂x

∣∣∣∣
x̂0:m

. (21)

I It follows that the information matrix and information vector are

Λ0:m ,

[
Λ0:m−1 Λ0:m−1,m

Λm,0:m−1 Λm

]
= Σ−1

0:m = HT
mWmHm (22)

η0:m ,

[
η0:m−1

ηm

]
= Λ0:mµ0:m = Λ0:m

[
x̂0:m−1

x̂m

]
−HT

mWmēm (23)

I We seek to find Λ̄ = Σ−1
m and η̄ = Λ̄µm.

18 / 24

Recall Marginalization Theorems

Theorem (Marginalization)
Given the joint Gaussian probability density function

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
= N−1

([
ηx

ηy

]
,

[
Λxx Λxy

Λyx Λyy

])
,

the marginal pdf p(x) =
∫∞
−∞ p(x, y)dy is given in covariance form as

p(x) = N (µx,Σxx), (24)

or in information form as
p(x) = N−1(η̄, Λ̄), (25)

where
η̄ = ηx −ΛxyΛ

−1
yy ηy , Λ̄ = Λxx −ΛxyΛ

−1
yy Λyx. (26)

19 / 24

Information Form - Getting Λ̄

I The marginalization theorem allows us to directly obtain Λ̄ with

Λ̄ = Λm −Λm,0:m−1Λ
−1
0:m−1Λ0:m−1,m. (27)

I Similarly, we can also use the marginalization theorem to obtain η̄, but this requires a bit more
algebra...

20 / 24

Information Form - Getting η̄

I From the marginalization theorem,

η̄ = ηm −Λm,0:m−1Λ
−1
0:m−1η0:m−1, (28)

where we have

η0:m = Λ0:mµ0:m (29)[
η0:m−1

ηm

]
=

[
Λ0:m−1 Λ0:m−1,m

Λm,0:m−1 Λm

] [
x̂0:m−1

x̂m

]
− HT

mWmēm︸ ︷︷ ︸
,

 b0:m−1

bm

. (30)

I Substituting in expressions for η0:m−1 and ηm from (30) into (28), and doing the algebra
eventually yields

η̄ = Λ̄x̂m − (bm −Λm,0:m−1Λ
−1
0:m−1b0:m−1) (31)

21 / 24

Information Form - Prior Distribution

I Now that we have obtained expressions for η̄, Λ̄, the new prior distribution can be expressed
in information form as

p(xm|x̌0,u, y0:m−1) = N−1(η̄, Λ̄), (32)

= β exp

(
−1

2
xTmΛ̄xm + η̄Txm

)
, (33)

= κ exp

(
−1

2
(xm − x̂m)TΛ̄(xm − x̂m) (34)

−(bm −Λm,0:m−1Λ
−1
0:m−1b0:m−1)Txm

)
,

where β and κ are normalization constants.

A few algebra steps were skipped going from (33) to (34).

22 / 24

Optimization Problem in Information Form

In information form, the least-squares problem gains an additional linear term

x̂ = arg min
x

(1

2
e(x)TWe(x) + (bm −Λm,0:m−1Λ

−1
0:m−1b0:m−1)Txm

)
(35)

where

e(x) =

xm − x̂m

xm+1 − f(xm,um, 0)
...

xk2
− f(xk2−1,uk2−1, 0)
ym − g(xm, 0)

...
yk2
− g(xk2

, 0)

, (36)

W = diag(Λ̄,Q−1
m+1, . . . ,Q

−1
k2
,R−1

m , . . . ,R−1
k2

). (37)

The Gauss-Newton algorithm can still be used with this additional linear term.

23 / 24

References

These slides are based on [1] [2] [3] [4]

[1] T. Barfoot, State Estimation for Robotics. Toronto, ON: Cambridge University Press, 2019.
[2] T. C. Dong-Si and A. I. Mourikis, “Motion tracking with fixed-lag smoothing: Algorithm and

consistency analysis,” Proceedings - IEEE International Conference on Robotics and
Automation, pp. 5655–5662, 2011.

[3] G. Sibley, “A Sliding Window Filter for SLAM,” University of Southern California, Tech. Rep.,
2006.

[4] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state filters for
view-based SLAM,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1100–1114, 2006.

24 / 24

	References

