Sliding Window Filtering - Batch Estimation Using a Subset of Data -

Charles C. Cossette and Prof. James Richard Forbes

McGill University, Department of Mechanical Engineering

November 7, 2022

Problem Statement

- The batch state estimation framework is a robust, accurate state estimation technique.
- However, as a robot moves in time, states cannot be added into the batch estimation problem endlessly.
- The complexity of the state estimation task would grow with the life of the robot.
- A version of the batch estimation problem that has constant complexity is needed.
- This is the sliding window filter.
- Again, the following process and measurement models

$$
\begin{aligned}
\mathbf{x}_{k} & =\mathbf{f}\left(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{w}_{k-1}\right), \\
\mathbf{y}_{k} & =\mathbf{g}\left(\mathbf{x}_{k}, \mathbf{v}_{k}\right),
\end{aligned}
$$

will be used, where $\mathbf{w}_{k-1}, \mathbf{v}_{k}$ are zero-mean Gaussian noise.

Scenario

- Suppose a robot starts at time $k=0$. It travels for K discrete time steps until it reaches time k_{1}.

Scenario

- Suppose a robot starts at time $k=0$. It travels for K discrete time steps until it reaches time k_{1}.

- The robot then continues to travel to time k_{2}.

Scenario

- Suppose a robot starts at time $k=0$. It travels for K discrete time steps until it reaches time k_{1}.

- The robot then continues to travel to time k_{2}.

- The robot then removes the m oldest states from its active state vector, and performs a new batch estimate.

Marginalization of the Old States

- However, we should not simply "delete" the oldest states.
- It is more appropriate to marginalize them out.

Definition (Marginalization)

Recall that marginalization refers to integrating a joint PDF $p(\mathbf{x}, \mathbf{y})$ with respect to some of the variables, such as \mathbf{x}

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{x}=\int_{-\infty}^{\infty} p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y}) \mathrm{d} \mathbf{x}=p(\mathbf{y}) \underbrace{\int_{-\infty}^{\infty} p(\mathbf{x} \mid \mathbf{y}) \mathrm{d} \mathbf{x}}_{=1}=p(\mathbf{y}) \tag{1}
\end{equation*}
$$

Marginalization of the Old States

Using the colon notation,

- $\mathbf{x}_{0: m-1}$ are the states to be marginalized,
- $\mathbf{x}_{m: k_{1}}$ are the states that remain in the window, and
- $\mathbf{x}_{m: k_{2}}$ are the states in the new window.

Marginalization of the Old States

- We will start with the full batch MAP estimation problem,

$$
\begin{equation*}
\hat{\mathbf{x}}_{0: k_{2}}=\underset{\mathbf{x}_{0: k_{2}}}{\arg \max } p\left(\mathbf{x}_{0: k_{2}} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) \tag{2}
\end{equation*}
$$

where $\mathbf{x}_{0: k_{2}}=\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{k_{2}}\right\}$.

- The full joint PDF can be expanded into factors as follows

$$
\begin{aligned}
p\left(\mathbf{x}_{0: k_{2}} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)= & \alpha p\left(\mathbf{y}_{m: k_{2}} \mid \mathbf{x}, \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{1: m-1}\right) p\left(\mathbf{x}_{0: k_{2}} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{1: m-1}\right) \\
= & \alpha p\left(\mathbf{y}_{m: k_{2}} \mid \mathbf{x}\right) p\left(\mathbf{x}_{0: k_{2}} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{1: m-1}\right) \\
= & \alpha p\left(\mathbf{y}_{m: k_{2}} \mid \mathbf{x}\right) p\left(\mathbf{x}_{m: k_{2}} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{1: m-1}, \mathbf{x}_{m}\right) \\
& \times p\left(\mathbf{x}_{0: m-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{1: m-1}\right) \\
= & \alpha\left(\prod_{k=m}^{k_{2}} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right)\left(\prod_{k=m+1}^{k_{2}} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right) \\
& \times p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{1: m-1}, \mathbf{x}_{0: m-1}\right) p\left(\mathbf{x}_{0: m-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{1: m-1}\right) .
\end{aligned}
$$

Marginalization of the Old States

- We may now marginalize out the oldest states by integrating with respect to $\mathbf{x}_{0: m-1}$

$$
\begin{align*}
\int_{-\infty}^{\infty} p\left(\mathbf{x}_{0: k_{2}} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right) \mathrm{d} \mathbf{x}_{0: m-1} & =\alpha\left(\prod_{k=m}^{k_{2}} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right)\left(\prod_{k=m+1}^{k_{2}} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right) \\
& \times \int_{-\infty}^{\infty} p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{0: m-1}, \mathbf{x}_{0: m-1}\right) p\left(\mathbf{x}_{0: m-1} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{0: m-1}\right) \mathrm{d} \mathbf{x}_{0: m-1} \tag{3}\\
p\left(\mathbf{x}_{m: k_{2}} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}\right)=\alpha \overbrace{\left(\prod_{k=m}^{k_{2}} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right)\left(\prod_{k=m+1}^{k_{2}} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}\right)\right)}^{\text {measurements }} & \times \underbrace{p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right)}_{\text {process model }} .
\end{align*}
$$

- As with the batch MAP approach, we could now attempt to maximize (4), which would lead to a least-squares problem.

Determining the New Prior Distribution

- We are only missing one thing to set up our least-squares problem, which is $p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right)$

- That is, we are looking for the distribution of x_{m} given all the measurements that occurred before it.
- $p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right)$ takes the role of the new "prior", which was $p\left(\mathbf{x}_{0} \mid \check{\mathbf{x}}_{0}\right)$ in the full batch scenario.

Determining the New Prior Distribution

Theorem (Marginalization)

Given the joint Gaussian probability density function

$$
p(\mathbf{x}, \mathbf{y})=\mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\mu}_{x} \\
\boldsymbol{\mu}_{y}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\
\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}
\end{array}\right]\right)
$$

the marginal PDF $p(\mathbf{x})=\int_{-\infty}^{\infty} p(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{y}$ is given by

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x x}\right) . \tag{5}
\end{equation*}
$$

Determining the New Prior Distribution

- Therefore, we can use our old estimates (from the previous window) $\left\{\hat{\mathbf{x}}_{0: m-1}, \hat{\mathbf{x}}_{m}\right\}=\hat{\mathbf{x}}_{0: m}$ to construct

$$
\begin{equation*}
p\left(\mathbf{x}_{0: m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right)=\beta \exp \left(-\frac{1}{2} \mathbf{e}_{m}\left(\mathbf{x}_{0: m}\right)^{\top} \mathbf{W}_{m} \mathbf{e}_{m}\left(\mathbf{x}_{0: m}\right)\right), \tag{6}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{e}_{m}\left(\mathbf{x}_{0: m}\right)=\left[\begin{array}{c}
\mathbf{x}_{0}-\check{\mathbf{x}}_{0} \\
\mathbf{x}_{1}-\mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{0}\right) \\
\vdots \\
\mathbf{x}_{m}-\mathbf{f}\left(\mathbf{x}_{m-1}, \mathbf{u}_{m-1}, \mathbf{0}\right) \\
\mathbf{y}_{0}-\mathbf{g}\left(\mathbf{x}_{0}, \mathbf{0}\right) \\
\vdots \\
\mathbf{y}_{m-1}-\mathbf{g}\left(\mathbf{x}_{m-1}, \mathbf{0}\right)
\end{array}\right], \tag{7}\\
\mathbf{W}_{m}=\operatorname{diag}\left(\mathbf{P}_{0}^{-1}, \mathbf{Q}_{1}^{-1}, \ldots, \mathbf{Q}_{m}^{-1}, \mathbf{R}_{0}^{-1}, \ldots, \mathbf{R}_{m-1}^{-1}\right) . \tag{8}
\end{gather*}
$$

- Although this is not Gaussian, it can be approximated as one by linearizing $\mathbf{e}_{m}\left(\mathbf{x}_{0: m}\right)$.

Watch out.

- Very important: $\mathbf{e}_{m} \neq \mathbf{e}$.
- \mathbf{e}_{m} is a "mini"/smaller vector that only contains errors involving the states being marginalized.
- You cannot reuse the same $\mathbf{e}, \mathbf{H}, \mathbf{W}$ matrices that were involved in the initial batch estimate.

Determining the New Prior Distribution

- The mean and covariance of a Gaussian approximation to (6) are given by

$$
\begin{align*}
\boldsymbol{\mu}_{0: m} & =\left[\begin{array}{c}
\boldsymbol{\mu}_{0: m-1} \\
\boldsymbol{\mu}_{m}
\end{array}\right]=\left[\begin{array}{c}
\hat{\mathbf{x}}_{0: m-1} \\
\hat{\mathbf{x}}_{m}
\end{array}\right]-\left(\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \mathbf{H}_{m}\right)^{-1} \mathbf{H}_{m}^{\top} \mathbf{W}_{m} \overline{\mathbf{e}}_{m} \tag{9}\\
\boldsymbol{\Sigma}_{0: m} & =\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{0: m-1} & \boldsymbol{\Sigma}_{0: m-1, m} \\
\boldsymbol{\Sigma}_{m, 0: m-1} & \boldsymbol{\Sigma}_{m}
\end{array}\right]=\left(\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \mathbf{H}_{m}\right)^{-1} \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
\overline{\mathbf{e}}_{m}=\mathbf{e}_{m}\left(\hat{\mathbf{x}}_{0: m}\right), \quad \mathbf{H}_{m}=\left.\frac{\partial \mathbf{e}_{m}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\hat{\mathbf{x}}_{0: m}} \tag{11}
\end{equation*}
$$

- This can finally be used to approximate $p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right)$ as

$$
\begin{equation*}
p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right) \approx \mathcal{N}\left(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m}\right) \tag{12}
\end{equation*}
$$

- This is the only approximation made in going from the batch estimate to the sliding window filter.
- Important: $\mathbf{e}_{m}, \mathbf{H}_{m}, \mathbf{W}_{m}$ are different from $\mathbf{e}, \mathbf{H}, \mathbf{W}$.

State Estimate of the New Window

- Returning to the actual estimation, we can find the states which maximize $p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right) \approx \mathcal{N}\left(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m}\right)$ as the prior,

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \max } \alpha\left(\prod_{k=m}^{k_{2}} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right)\left(\prod_{k=m+1}^{k_{2}} p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k}\right)\right) p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right) . \tag{13}
\end{equation*}
$$

- We proceed as with the batch MAP framework by minimizing the negative logarithm of (13), which leads to the following nonlinear weighted least-squares problem ...

State Estimate of the New Window

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2} \mathbf{e}(\mathbf{x}) \mathbf{W e}(\mathbf{x}) \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{e}(\mathbf{x})=\left[\begin{array}{c}
\mathbf{x}_{m}-\boldsymbol{\mu}_{m} \\
\mathbf{x}_{m+1}-\mathbf{f}\left(\mathbf{x}_{m}, \mathbf{u}_{m}, \mathbf{0}\right) \\
\vdots \\
\mathbf{x}_{k_{2}}-\mathbf{f}\left(\mathbf{x}_{k_{2}-1}, \mathbf{u}_{k_{2}-1}, \mathbf{0}\right) \\
\mathbf{y}_{m}-\mathbf{g}\left(\mathbf{x}_{m}, \mathbf{0}\right) \\
\vdots \\
\mathbf{y}_{k_{2}}-\mathbf{g}\left(\mathbf{x}_{k_{2}}, \mathbf{0}\right)
\end{array}\right] \tag{15}\\
\mathbf{W}=\operatorname{diag}\left(\boldsymbol{\Sigma}_{m}^{-1}, \mathbf{Q}_{m+1}^{-1}, \ldots, \mathbf{Q}_{k_{2}}^{-1}, \mathbf{R}_{m}^{-1}, \ldots, \mathbf{R}_{k_{2}}^{-1}\right) \tag{16}
\end{gather*}
$$

- This is solved as usual with the Gauss-Newton algorithm.

Summary

Sliding Window Filter

To estimate the states in the window at time k_{2}, denoted $\hat{\mathbf{x}}_{k_{2}}$ starting with the estimate of the states of the previous window at time k_{1}, denoted $\hat{\mathbf{x}}_{k_{1}}$:

1. split the previous window's estimate into the marginalized states and the remaining states

$$
\hat{\mathbf{x}}_{0: k_{1}}=\left[\begin{array}{c}
\hat{\mathbf{x}}_{0: m-1} \tag{17}\\
\hat{\mathbf{x}}_{m: k_{1}}
\end{array}\right] ;
$$

2. solve for $\mu_{m}, \boldsymbol{\Sigma}_{m}$ using (9), (10), (11);
3. construct the nonlinear least squares problem using (14), (15), (16);
4. solve the nonlinear least squares problem using the Gauss-Newton algorithm.

Sliding Window Filter vs. Extended Kalman Filter

Norm of Estimation Error

Figure 1: Estimation performance using real data of a quadrotor with an IMU and distance measurements to a landmark.

Information Form of the Sliding Window Filter

- Obtaining Σ_{m} requires us to invert $\left(\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \mathbf{H}_{m}\right)$, which can be expensive for large window sizes.
- We can completely avoid doing this if we instead parameterize

$$
\begin{equation*}
p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right)=\mathcal{N}^{-1}(\overline{\boldsymbol{\eta}}, \overline{\boldsymbol{\Lambda}}) \tag{18}
\end{equation*}
$$

using the information form.

- We have easy access to the following matrices, which we can "split up" into sub-blocks as follows

$$
\begin{aligned}
& \mathbf{H}_{m}^{\top} \mathbf{W}_{m} \mathbf{H}_{m}=\boldsymbol{\Lambda}_{0: m} \triangleq\left[\begin{array}{cc}
\boldsymbol{\Lambda}_{0: m-1} & \boldsymbol{\Lambda}_{0: m-1, m} \\
\boldsymbol{\Lambda}_{m, 0: m-1} & \boldsymbol{\Lambda}_{m}
\end{array}\right] \\
& \mathbf{H}_{m}^{\top} \mathbf{W}_{m} \overline{\mathbf{e}}_{m} \triangleq \mathbf{b}_{0: m} \triangleq\left[\begin{array}{c}
\mathbf{b}_{0: m-1} \\
\mathbf{b}_{m}
\end{array}\right]
\end{aligned}
$$

- The goal is to find expressions for $\bar{\eta}, \bar{\Lambda}$, as a function of the blocks of $\Lambda_{0: m}, \mathbf{b}_{0: m}$.

Information Form of the Sliding Window Filter

- Recall that the mean and covariance of a Gaussian approximation to $p\left(\mathbf{x}_{0: m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}_{0: m-1}, \mathbf{y}_{0: m-1}\right)$ are given by

$$
\begin{align*}
& \boldsymbol{\mu}_{0: m}=\left[\begin{array}{c}
\boldsymbol{\mu}_{0: m-1} \\
\boldsymbol{\mu}_{m}
\end{array}\right]=\left[\begin{array}{c}
\hat{\mathbf{x}}_{0: m-1} \\
\hat{\mathbf{x}}_{m}
\end{array}\right]-\left(\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \mathbf{H}_{m}\right)^{-1} \mathbf{H}_{m}^{\top} \mathbf{W}_{m} \overline{\mathbf{e}}_{m} \tag{19}\\
& \boldsymbol{\Sigma}_{0: m}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{0: m-1} & \boldsymbol{\Sigma}_{0: m-1, m} \\
\boldsymbol{\Sigma}_{m, 0: m-1} & \boldsymbol{\Sigma}_{m}
\end{array}\right]=\left(\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \mathbf{H}_{m}\right)^{-1} \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
\overline{\mathbf{e}}_{m}=\mathbf{e}_{m}\left(\hat{\mathbf{x}}_{0: m}\right), \quad \mathbf{H}_{m}=\left.\frac{\partial \mathbf{e}_{m}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\hat{\mathbf{x}}_{0: m}} \tag{21}
\end{equation*}
$$

- It follows that the information matrix and information vector are

$$
\begin{align*}
& \boldsymbol{\Lambda}_{0: m} \triangleq\left[\begin{array}{cc}
\boldsymbol{\Lambda}_{0: m-1} & \boldsymbol{\Lambda}_{0: m-1, m} \\
\boldsymbol{\Lambda}_{m, 0: m-1} & \boldsymbol{\Lambda}_{m}
\end{array}\right]=\boldsymbol{\Sigma}_{0: m}^{-1}=\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \mathbf{H}_{m} \tag{22}\\
& \boldsymbol{\eta}_{0: m} \triangleq\left[\begin{array}{c}
\boldsymbol{\eta}_{0: m-1} \\
\boldsymbol{\eta}_{m}
\end{array}\right]=\boldsymbol{\Lambda}_{0: m} \boldsymbol{\mu}_{0: m}=\boldsymbol{\Lambda}_{0: m}\left[\begin{array}{c}
\hat{\mathbf{x}}_{0: m-1} \\
\hat{\mathbf{x}}_{m}
\end{array}\right]-\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \overline{\mathbf{e}}_{m} \tag{23}
\end{align*}
$$

- We seek to find $\bar{\Lambda}=\Sigma_{m}^{-1}$ and $\bar{\eta}=\bar{\Lambda} \mu_{m}$.

Recall Marginalization Theorems

Theorem (Marginalization)

Given the joint Gaussian probability density function

$$
p(\mathbf{x}, \mathbf{y})=\mathcal{N}\left(\left[\begin{array}{c}
\boldsymbol{\mu}_{x} \\
\boldsymbol{\mu}_{y}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\
\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}
\end{array}\right]\right)=\mathcal{N}^{-1}\left(\left[\begin{array}{c}
\boldsymbol{\eta}_{x} \\
\boldsymbol{\eta}_{y}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Lambda}_{x x} & \boldsymbol{\Lambda}_{x y} \\
\boldsymbol{\Lambda}_{y x} & \boldsymbol{\Lambda}_{y y}
\end{array}\right]\right),
$$

the marginal pdf $p(\mathbf{x})=\int_{-\infty}^{\infty} p(\mathbf{x}, \mathbf{y})$ dy is given in covariance form as

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x x}\right), \tag{24}
\end{equation*}
$$

or in information form as

$$
\begin{equation*}
p(\mathbf{x})=\mathcal{N}^{-1}(\overline{\boldsymbol{\eta}}, \overline{\boldsymbol{\Lambda}}), \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\boldsymbol{\eta}}=\boldsymbol{\eta}_{x}-\boldsymbol{\Lambda}_{x y} \boldsymbol{\Lambda}_{y y}^{-1} \boldsymbol{\eta}_{y} \quad, \quad \overline{\boldsymbol{\Lambda}}=\boldsymbol{\Lambda}_{x x}-\boldsymbol{\Lambda}_{x y} \boldsymbol{\Lambda}_{y y}^{-1} \boldsymbol{\Lambda}_{y x} . \tag{26}
\end{equation*}
$$

Information Form - Getting $\bar{\Lambda}$

- The marginalization theorem allows us to directly obtain $\bar{\Lambda}$ with

$$
\begin{equation*}
\overline{\boldsymbol{\Lambda}}=\boldsymbol{\Lambda}_{m}-\boldsymbol{\Lambda}_{m, 0: m-1} \boldsymbol{\Lambda}_{0: m-1}^{-1} \boldsymbol{\Lambda}_{0: m-1, m} . \tag{27}
\end{equation*}
$$

- Similarly, we can also use the marginalization theorem to obtain $\overline{\boldsymbol{\eta}}$, but this requires a bit more algebra...

Information Form - Getting $\bar{\eta}$

- From the marginalization theorem,

$$
\begin{equation*}
\overline{\boldsymbol{\eta}}=\boldsymbol{\eta}_{m}-\boldsymbol{\Lambda}_{m, 0: m-1} \boldsymbol{\Lambda}_{0: m-1}^{-1} \boldsymbol{\eta}_{0: m-1} \tag{28}
\end{equation*}
$$

where we have

$$
\begin{align*}
\boldsymbol{\eta}_{0: m} & =\boldsymbol{\Lambda}_{0: m} \boldsymbol{\mu}_{0: m} \tag{29}\\
{\left[\begin{array}{cc}
\boldsymbol{\eta}_{0: m-1} \\
\boldsymbol{\eta}_{m}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{\Lambda}_{0: m-1} & \boldsymbol{\Lambda}_{0: m-1, m} \\
\boldsymbol{\Lambda}_{m, 0: m-1} & \boldsymbol{\Lambda}_{m}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{x}}_{0: m-1} \\
\hat{\mathbf{x}}_{m}
\end{array}\right] } & -\underbrace{\mathbf{H}_{m}^{\top} \mathbf{W}_{m} \overline{\mathbf{e}}_{m}} . \tag{30}\\
& \triangleq\left[\begin{array}{c}
\mathbf{b}_{0: m-1} \\
\mathbf{b}_{m}
\end{array}\right]
\end{align*}
$$

- Substituting in expressions for $\boldsymbol{\eta}_{0: m-1}$ and $\boldsymbol{\eta}_{m}$ from (30) into (28), and doing the algebra eventually yields

$$
\begin{equation*}
\bar{\eta}=\bar{\Lambda} \hat{\mathbf{x}}_{m}-\left(\mathbf{b}_{m}-\boldsymbol{\Lambda}_{m, 0: m-1} \boldsymbol{\Lambda}_{0: m-1}^{-1} \mathbf{b}_{0: m-1}\right) \tag{31}
\end{equation*}
$$

Information Form - Prior Distribution

- Now that we have obtained expressions for $\bar{\eta}, \bar{\Lambda}$, the new prior distribution can be expressed in information form as

$$
\begin{align*}
p\left(\mathbf{x}_{m} \mid \check{\mathbf{x}}_{0}, \mathbf{u}, \mathbf{y}_{0: m-1}\right)= & \mathcal{N}^{-1}(\overline{\boldsymbol{\eta}}, \bar{\Lambda}) \tag{32}\\
= & \beta \exp \left(-\frac{1}{2} \mathbf{x}_{m}^{\top} \overline{\boldsymbol{\Lambda}} \mathbf{x}_{m}+\overline{\boldsymbol{\eta}}^{\top} \mathbf{x}_{m}\right) \tag{33}\\
= & \kappa \exp \left(-\frac{1}{2}\left(\mathbf{x}_{m}-\hat{\mathbf{x}}_{m}\right)^{\top} \overline{\boldsymbol{\Lambda}}\left(\mathbf{x}_{m}-\hat{\mathbf{x}}_{m}\right)\right. \tag{34}\\
& \left.\quad-\left(\mathbf{b}_{m}-\mathbf{\Lambda}_{m, 0: m-1} \boldsymbol{\Lambda}_{0: m-1}^{-1} \mathbf{b}_{0: m-1}\right)^{\top} \mathbf{x}_{m}\right)
\end{align*}
$$

where β and κ are normalization constants.
A few algebra steps were skipped going from (33) to (34).

Optimization Problem in Information Form

In information form, the least-squares problem gains an additional linear term

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min }\left(\frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{W e}(\mathbf{x})+\left(\mathbf{b}_{m}-\boldsymbol{\Lambda}_{m, 0: m-1} \boldsymbol{\Lambda}_{0: m-1}^{-1} \mathbf{b}_{0: m-1}\right)^{\top} \mathbf{x}_{m}\right) \tag{35}
\end{equation*}
$$

where

$$
\mathbf{e}(\mathbf{x})=\left[\begin{array}{c}
\mathbf{x}_{m}-\hat{\mathbf{x}}_{m} \tag{36}\\
\mathbf{x}_{m+1}-\mathbf{f}\left(\mathbf{x}_{m}, \mathbf{u}_{m}, \mathbf{0}\right) \\
\vdots \\
\mathbf{x}_{k_{2}}-\mathbf{f}\left(\mathbf{x}_{k_{2}-1}, \mathbf{u}_{k_{2}-1}, \mathbf{0}\right) \\
\mathbf{y}_{m}-\mathbf{g}\left(\mathbf{x}_{m}, \mathbf{0}\right) \\
\vdots \\
\mathbf{y}_{k_{2}}-\mathbf{g}\left(\mathbf{x}_{k_{2}}, \mathbf{0}\right)
\end{array}\right],
$$

$$
\begin{equation*}
\mathbf{W}=\operatorname{diag}\left(\bar{\Lambda}, \mathbf{Q}_{m+1}^{-1}, \ldots, \mathbf{Q}_{k_{2}}^{-1}, \mathbf{R}_{m}^{-1}, \ldots, \mathbf{R}_{k_{2}}^{-1}\right) . \tag{37}
\end{equation*}
$$

The Gauss-Newton algorithm can still be used with this additional linear term.

References

These slides are based on [1] [2] [3] [4]
[1] T. Barfoot, State Estimation for Robotics. Toronto, ON: Cambridge University Press, 2019.
[2] T. C. Dong-Si and A. I. Mourikis, "Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis," Proceedings - IEEE International Conference on Robotics and Automation, pp. 5655-5662, 2011.
[3] G. Sibley, "A Sliding Window Filter for SLAM," University of Southern California, Tech. Rep., 2006.
[4] R. M. Eustice, H. Singh, and J. J. Leonard, "Exactly sparse delayed-state filters for view-based SLAM," IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1100-1114, 2006.

